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Abstract.  Developers using software components need to 
be confident in their selection of the most suitable 
component.  Manual searching is time consuming and 
unlikely to be able to consider large numbers of 
components.  The Context-driven Component Evaluation 
(CdCE) project is investigating ways to use Artificial 
Intelligence to assist the selection process.  This paper 
describes our Machine Learning approach where we train 
a system to recognise candidates that match an ideal 
component specification.  We utilise automated test 
generation techniques to create data for training the 
system.  This results in a generic assessment system that 
can automatically short-list components for further 
investigation. 

1. Introduction 

Software Engineering is a movement to apply engineering 
principles to software development. Component-based 
Software Engineering (CBSE) uses software components 
as the building blocks for new systems, similar to 
hardware components.  Software components are 
replaceable, reusable modules of executable code with 
well-defined interfaces [1].  As CBSE becomes more 
popular, we are presented with a range of components for 
a given application.  Developers need a means for 
selecting the most suitable components from the growing 
number available in repositories and broker sites.  This is 
not only during initial development, but also when 
updating components or the surrounding system. 

The component selection task is normally undertaken 
by experts who use heuristics to determine which 
components are to be selected or investigated further.  
The desire to evaluate components using a repeatable, 
traceable method leads us to develop evaluation 
processes, such as the Context-driven Component 
Evaluation (CdCE) Process.  Structured processes allow 
us to standardise how we deal with candidates, but a 
manual assessment is unable to scale to large numbers of 
components.  We propose that Artificial Intelligence (AI) 
techniques be applied to automate parts of the selection 

process to allow the consideration of larger numbers of 
candidates.   

A common approach to assessing components is to 
take weighted scores against a list of attributes and 
aggregate them.  An expert’s holistic view of a candidate 
may incorporate interplay between attributes – conflicting 
or reinforcing its suitability.  This interplay can be 
recorded as a series of relations between attributes.  Rules 
associated with these relations can then interact with the 
candidate’s “scores” against attributes and their overall 
evaluation. This interplay between attributes is lost in a 
numerical aggregation.  In this paper we describe our 
approach to selecting components, which works from a 
specification of the ideal component, then uses machine 
learning and test case generation techniques to train the 
system to automatically evaluate candidate components.  
Our Selector system automates the determination of rules 
and building the knowledge base so that the user interface 
is simple and intuitive.  We address the issues of 
scalability, attribute interplay and the ability to explain 
the reasoning behind a selection decision. 

The following section discusses component selection, 
AI techniques and the application of AI to component 
selection.  Section 3 describes our Machine Learning 
approach to selection.  A case study is presented in 
Section 4.  The CdCE Project is described in Section 5, 
with conclusions and future work in Section 6. 

2. Related work 

Selection of components is a similar problem to selection 
of Commercial Off-The-Shelf (COTS) software, and 
COTS research can be applied to component selection.  
Research in component selection begins with defining the 
selection criteria.  Most selection approaches have a 
component model that describes the criteria or attributes 
to be used in the assessment, often implemented as a 
hierarchy.  A discussion of these models is given in [3].  
Other schemes develop a hierarchy for the specific 
problem [4][5].  The relative importance of the criteria 
may be determined using a structured approach such as 
AHP [2][5].  An assessment of each component against 



the criteria is then carried out, most often as a manual 
process.  A recommendation or ranking can then be 
determined.  This normally involves an aggregation of 
results using the Weighted Scoring Method (WSM) or the 
AHP [2].  In other cases, techniques such as Outranking 
are used [6].  Recent research has begun to use AI 
techniques to address issues with assessing components, 
in particular the inherent problems with aggregating 
results.  Neuro-fuzzy [7] and Rough fuzzy sets [8] have 
been used to deal with imprecision and uncertainty in 
component assessment, while overcoming some 
overheads of determining the original fuzzy sets.  Most 
techniques are more applicable to in-house repositories 
where the documentation of components can be 
standardised and detailed, with up to 1320 attributes for 
each component [9].  Our project is concerned with third 
party components sourced from a range of repositories.  
We then have a very large number of components to 
screen and rudimentary information about them.  This 
leads us to AI to carry out both coarse screening and more 
in-depth analysis of the technical features of candidate 
components.  It is important that the overheads for the AI 
technique are low as each selection process will have new 
requirements and is thus a new problem. 

Artificial Intelligence is a field that provides a range 
of techniques for representing and processing knowledge.  
When selecting an AI technique, it is important to 
consider the features that are needed, and which are more 
critical to the particular problem.  In the component 
selection problem, we are trying to classify the 
components as being acceptable or rejected. We also want 
to be able to adjust thresholds to include or exclude more 
candidates, where criteria may have been too restrictive or 
lenient.  Working with metadata from various sources 
introduces inconsistency to our data, so some tolerance 
for missing or uncertain data is important. 

Tables 1 and 2 in this document show how traditional 
and hybrid AI systems perform against eight criteria, all 
which are quite important for the automated selection of 
components.  Knowledge representation is important to 
component selection as our process is working with the 
metadata supplied by vendors and brokers, and the results 
need to be understandable to users.  As we will be 
working with information from diverse sources, there is a 
risk of missing and uncertain data.  Many of the selection 
criteria for components can be considered “a match” or 
“not a match”, but the facility to deal with imprecision 
may be more useful when looking at how well a 
description meets our needs, e.g. how close the cost of the 
component is to our ideal.    

Our interest in AI is to automate the selection of 
components.  An automated assessment is unlikely to be 
trusted unless there are explanation facilities to give the 
reasoning behind any decisions.  The traditional AI 
systems  that perform  well   on  explanation   ability   rate 

Table 1. Comparison of Traditional AI Techniques, 
adapted from [10] 

Feature 

E
xp

er
t 

Sy
st

em
s 

Fu
zz

y 
Sy

st
em

s 

N
eu

ra
l 

N
et

w
or

ks
 

G
en

et
ic

 
A

lg
or

it
hm

s 

C
4.

5 
C

la
ss

if
ic

at
io

n 

Knowledge 
representation 

+ ++ -- - + 

Uncertainty 
tolerance 

+ ++ ++ ++ - 

Imprecision 
tolerance 

-- ++ ++ ++ -- 

Adaptability -- - ++ ++ ++ 
Learning ability -- -- ++ ++ ++ 
Explanation 
ability 

++ ++ -- - ++ 

Knowledge 
discovery and 
data mining 

-- - ++ + + 

Maintainability -- + ++ + ++ 

Table 2. Comparison of Hybrid AI Techniques 
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poorly on adaptability, learning and maintenance.  This 
would lead to a trade off where the reasoning can be 
explained, but there is a heavy load on the expert to 
develop and tune rules – diminishing the advantage of 
using AI.   Neural expert or neuro-fuzzy systems may 
overcome this, assuming we can generate data to train the 
neural network.  Our interest in looking for components 



on the Internet does imply an interest in data mining and 
an AI technique that can extend to knowledge discovery 
would be an advantage.  Although not one of the criteria 
in the comparison tables, we also want to be able to deal 
with the interplay between attributes.  Any of expert 
systems, fuzzy systems or neural networks is capable of 
encoding these dependencies.   

It is clear that an AI technique for component 
selection would ideally rate well in all of the above 
categories.  For this investigation, we have chosen to use 
the C4.5 decision tree classifier [11].  C4.5 takes labelled 
data and grows a large tree which is pruned to create a 
decision tree of understandable size.  As can be seen in 
Table 1, this approach rates well in all features except 
uncertainty and imprecision tolerance.  We will be 
addressing these very important issues in future work by 
investigating other AI techniques for classifying data.  An 
evaluation of the relative performance will then be carried 
out. 

3. Intelligent Selection 

Any selection process begins with a requirements 
specification for comparison with candidate components.  
We work with an ideal specification based on an XML 
Schema template [12].  The ideal specification includes 
all attributes of interest to the application developer.  The 
specification is annotated with information regarding the 
priority of attributes and any interplay between them.  Our 
system combines the ideal specification with the schema 
definition to create an internal model of the desired 
component.  The system is not tied to the CdCE 
component model and can import any XML Schema and 
instance documents for a generic selection problem. 

The attributes describing the components are split into 
four categories, according to datatype.  This binding is 
determined from the Schema document.  The simplest is 
“string” where there can only be a single value per 
candidate.  An example is the dc:creator attribute – 
the Dublin Core [13] tag representing the software 
developer.  We also have date and numeric attributes 
where an optimal value is specified along with optional 
minimum and maximum values.  The final datatype is the 
multiString.  A multiString is used in situations where an 
attribute can have one of a set of values.  MultiString 
attributes are split into multiple attributes for input into 
the machine learning software.  For example, the desired 
values for the operatingSystem attribute may be 
UNIX and Linux.  We map these to 
operatingSystem_UNIX and operating-
System_Linux for training data and the data to be 
assessed.   

An issue in using supervised learning techniques1 is 
that they require either large amounts of historical data, or 
a manual evaluation of input data.  We have used 
techniques from test data generation to create a set of 
training data from the internal model of the ideal 
component.  Values for each attribute are grouped into 
equivalence classes, and the attributes themselves are 
grouped according to how they influence the evaluation.  
The internal model provides enough information to 
determine whether a component is accepted or rejected, 
which is used to attach a result to the generated datasets.   

Exhaustive generation of data is not practical.  With 
32 attributes in use of simple types (Boolean for this 
calculation), we would need over 4,000 million data 
entries to cover all combinations of the data.   The 
algorithm for generating the data targets groups of entries 
as “lessons” to train the system to learn a specific aspect 
of the assessment. The lessons first focus on 
distinguishing datasets to help the system learn where the 
border between acceptance or rejection of a component 
lies.  It also creates lessons around areas of complex 
interaction between attributes to reinforce the learning 
process.   The size of the generated dataset is dependent 
of the number of attributes in the selection task, and the 
amount of interplay between them.  Training the C4.5 
classifier is not greatly affected by the size of the dataset, 
and takes a few seconds.  We have used the same data 
with an Artificial Neural Network which takes over 20 
minutes to generate the classifier. 

A balance is required between the amount of data in 
each output category.  Early training sets oversimplified 
the decision to “reject all” due to the selection of training 
data.  A component selection process is likely to reject a 
high percentage of candidates, but using data that follows 
that distribution skews the training.  We are continuing to 
investigate how to balance the training to work with an 
optimal size and number of lessons.  The best results to 
date have come from generating between 1/2 to 2/3 of the 
training data falling within the acceptable class. 

4. Case Study 

In this case study we revisit a manual selection exercise 
working with real world data, updating it to use machine 
learning.  The scenario for the case study is the selection 
of a software component to provide scientific calculator 
functionality.  The XML for the ideal specification is 
given in Figure 1.  It uses the CdCE Schema as a base 

                                                

 

1 Supervised learning relies on a manual labelling of the training 
data for the system to learn the patterns for each classification.  
Unsupervised learning works with the patterns formed within 
the training data and attempts to group them into clusters.  Data 
falling inside a cluster can them be labelled according the 
closest cluster. 



with 32 attributes in the following categories: three 
numeric, one date, 21 String and seven multiString 
(enumerated).  The Schema allows some tags to be 
repeated, which map to multiString attributes in our 
system.  Potential component information was taken from 
four online sites.  These had been assessed previously 
with a manual application of the CdCE process.  A 
summary of that assessment is in Table 3.  It gives an 
indication of the rejection rate and the number of 
possiblilites that would need to be considered in a 
component selection problem.  The automation of 
selection is highly dependent on the adoption of a 
standard specification format by component brokers.   

The attributes used in the case study are shown in 
Table 4.  The attributes are classified as being mandatory, 
preferred or other.  Mandatory attributes must all be met 
for the candidate to be accepted. A threshold value 
modifies the number of preferred attributes that need to 
be matched to accept the candidate.  The other attributes 
do not affect the assessment. This provides three 
equivalence classes for our data generation.  Test 
generation uses equivalence classes to reduce the number 
of test cases by having one value represent the whole 
class of values, and may have rules for the output based 
on the input class.  For training the system, we use the 
equivalence classes to enumerate the combinations of 
attribute values inside and between classes, and the 
corresponding classification for that component. In this 
case, three of the attributes are mandatory and five are 
preferred, the remaining attributes are categorised as 
other.  We have arbitrarily selected a threshold of 0.5 
which rounds down to two out of five preferred attributes 
for acceptance. 

We use the Weka system [15] to access machine 
learning algorithms.  Weka uses ARFF format files where 
attributes and values are listed, then the training and/or 
test data.  For supervised learning, the last attribute 
denotes the classification of the entry, in this case 
result=accept/reject.   As mentioned previously, 
the generated  training  data is grouped  into lessons.  We 
start with lessons in acceptable attribute values, then look 
at what values will lead to rejection.  Parameters on the 
generation can adjust the number and size of lessons.  The 
lessons focus on the patterns of attribute values that are 
near the border of acceptable/unacceptable.  Random 
selection of training data would almost certainly result in 
all candidates being classified as rejected.  Our solution is 
to apply Boundary Value Analysis (BVA) techniques.  
We select training data that sits close to the boundary 
between acceptance and rejection, along with some more 
straight-forward entries.  This has prevented the classifier 
from over-simplifying its decision tree and allows us to 
work with relatively small training sets. 

Table 3. Case Study Manual Assessment [14] 

Site 
Number of 

entries 
Number of 
candidates  

I >8,000 1 
II >12,000 7 
III >36,000 4 
IV >30,000 0 

Total >86,000 9 (3 duplicates) 

 

Table 4. Case Study Ideal Specification 

Attribute Type Importance Values 

Description Multi-
String 

Mandatory 
Scientific 
Calculator 

Development 
Status 

String Mandatory Mature 

Licence String Preferred GPL 
Price Numeric Preferred $0-$75 
Development 
Language 

Multi-
String 

Preferred 
Java 
C++ 

Operating 
System 

Multi-
String 

Mandatory Linux 

Memory Numeric Preferred 5-70Mb 
Disk Space Numeric Preferred 10-90Mb 

  

Figure 1. Ideal Specification in XML 

Our  system provides great flexibility in the generation 
of training data.  We use Weka’s implementation of the 
C4.5 classifier which outputs a decision tree.  It also gives 
an analysis of the resultant tree’s performance against the 
training and test data.  The derived decision tree matched 
the model of the candidate selection criteria and when 
applied to the training data, it correctly classified 100% 
entries.  Another test of the classifier was run against 
simulated data and correctly classified all the components 
and selected 27 out of 2000 components as potential 
candidates. 

We then ran the trained classifier over real component 
data where it identified 17 suitable components for the 



578 that were considered.  Although the four repositories 
offered over 86,000 entries, we worked with a subset of 
those matching the search criterion “calculator” as manual 
conversion of all entries to XML was impractical.  
Incorrect results were given for less than 7% of the data, 
in situations where values for attributes were missing.  
Classification of missing data is one of the limitations of 
C4.5.  If it has not seen a particular value for an attribute, 
it will still try to classify the instance according to its 
decision tree, with unpredictable results.  In our data, 
missing information was replaced with “-” for text 
attributes and -1 or 1000 for numeric attributes.  We are 
investigating the substitution of average or default values 
for missing values, as well as alternate Machine Learning 
approaches to improve the handling of missing data. 

At this point, we can consider updating or tuning the 
ideal specification.  Using the facilities provided by 
Weka, we can look at the component data as individual 
attributes or as groups of attributes.  Statistical 
information about individual attributes helps us to adjust 
ranges for numeric values.  Clustering tools help us to 
find components that have a similar profile to our ideal 
specification.  We can then adjust the ideal specification, 
retrain the classifier and re-run the component data to get 
a tighter match on suitable components.    

5. Context-driven Component Evaluation2 

This work is part of the CdCE Project.  The Project 
aims to develop strategies for the assessment of software 
components, both through static comparison of developer 
requirements to a candidate component specification and 
by generating context-driven tests for the dynamic 
assessment of short-listed components.  We address the 
issues of sourcing, selection and evaluation of software 
components, with indirect benefits in testing and trust. 
The process is driven by a specification of the ideal 
component and its operating context, which provides a 
foundation for the automation of the selection process. 
We focus on the selection of third party components from 
commercial and open source brokers and repositories 
where the format and detail of component documentation 
can vary widely. 

An important attribute of third party software 
components is that they are written for the general case.  
They then require contextual information and testing to 
fully evaluate their suitability to an application [16]. The 
developer needs to know that the component is not only 
reliable and meets its specification, but that it is suited to 
the target system. Component certification can improve 
confidence and trust, but is not sufficient reason for a 
particular selection as it does not take context into 

                                                

 

2 Formerly known as the Context-driven Component Testing 
(CdCT) project 

account and cannot ensure that a component will behave 
correctly in another environment [17]. Our ideal 
component specification includes details of the 
requirements for the component and aspects of the target 
system to allow a context-aware evaluation of a 
component's suitability. 

Figure 2 shows our process for component evaluation.  
In the first step we define the requirements which become 
the ideal component specification.  The ideal component 
is specified on two levels, metadata for descriptive 
information, and a formal specification of the interfaces 
and behaviour in Z notation.   Step 2 searches for 
candidates matching the ideal specification, resulting in a 
short-list for further examination. Abstract test cases are 
generated for the components in Step 3, based on the 
formal specification of the ideal component.  The tests 
can also be used for system and regression testing.  An 
adaptation model is developed for each candidate in Step 
4 and used to adapt the abstract test cases to match each 
of the short-listed candidates. 

 

Figure 2. Activity diagram for CdCE Process 

The tests are executed against the candidates in Step 5, 
and the test and short-listing results are combined in Step 
6 to get an overall picture for each component.  In Step 7 
we look at the results across the candidate components to 
generate a comparison. This may involve aggregation for 
scores against criteria, or other methods such as the C4.5 
classifier described in this paper. We can then move to 
Step 8 and provide a recommendation for component 



selection, including reasons behind the recommendation, 
and information to assist in adapting and integrating the 
component.  A more detailed description of the process 
appears in [18] and [14].  We are currently developing a 
tool to assist developers through the CdCE process, 
linking to classification and test generation software and 
compiling the results of each step for generation of the 
recommendation(s) in Step 8. 

6. Conclusion 

We have explored the use of Machine Learning 
algorithms for the selection of software components.  Our 
case study results show promise, with the generated data 
training the C4.5 classifier and providing an appropriate 
decision tree.  It then gave correct classification for all 
candidate components (in minutes) compared with a 
manual approach which missed some candidates and took 
over eight hours.  Our training data generation overcomes 
a major issue with supervised Machine Learning in that it 
does not require large amounts of historical or statistical 
data as we generate the training data and labels 
(accept/reject) from a model.  We also address the 
problems of aggregation-based component selection 
approaches where the relationships between components 
are lost. 

Machine Learning is not normally economical for 
one-off classification problems.  Each new search for a 
component is a new problem with different selection 
criteria.  Our approach works from the ideal specification, 
which is always necessary for component selection.  We 
automate the training data generation from the ideal 
specification using generic techniques and can easily train 
for the selection task at hand.  The result is a considerable 
automation of the selection process requiring a small 
amount of expert time.  We are currently applying this to 
the short-listing or filtering stage of component selection, 
but it can also be used for the more technical evaluation 
required later in the selection process (Step 7 of CdCE 
Process).  The Machine Learning tools can also be used to 
adjust or tune the ideal specification based on statistical 
and clustering information. 

This work is one way that AI can be applied to benefit 
those in the computing community.  We plan to extend 
this work by investigating and evaluating other classifiers 
and Neural Networks to further utilise the generated 
training data for supervised learning of component 
selection criteria.  We are also looking at improving the 
data representation so that more information can be fed 
back into the process via clustering and other learning 
techniques. 
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