
Learning to Select Software Components

Valerie Maxville1, Chiou Peng Lam1, Jocelyn Armarego2

1Edith Cowan University, 2Murdoch University
vmaxvill@student.ecu.edu.au, c.lam@cowan.edu.au,

jocelyn@eng.murdoch.edu.au

Abstract. Developers using software components need to
be confident in their selection of the most suitable
component. Manual searching is time consuming and
unlikely to be able to consider large numbers of
components. The Context-driven Component Evaluation
(CdCE) project is investigating ways to use Artificial
Intelligence to assist the selection process. This paper
describes our Machine Learning approach where we train
a system to recognise candidates that match an ideal
component specification. We utilise automated test
generation techniques to create data for training the
system. This results in a generic assessment system that
can automatically short-list components for further
investigation.

1. Introduction

Software Engineering is a movement to apply engineering
principles to software development. Component-based
Software Engineering (CBSE) uses software components
as the building blocks for new systems, similar to
hardware components. Software components are
replaceable, reusable modules of executable code with
well-defined interfaces [1]. As CBSE becomes more
popular, we are presented with a range of components for
a given application. Developers need a means for
selecting the most suitable components from the growing
number available in repositories and broker sites. This is
not only during initial development, but also when
updating components or the surrounding system.

The component selection task is normally undertaken
by experts who use heuristics to determine which
components are to be selected or investigated further.
The desire to evaluate components using a repeatable,
traceable method leads us to develop evaluation
processes, such as the Context-driven Component
Evaluation (CdCE) Process. Structured processes allow
us to standardise how we deal with candidates, but a
manual assessment is unable to scale to large numbers of
components. We propose that Artificial Intelligence (AI)
techniques be applied to automate parts of the selection

process to allow the consideration of larger numbers of
candidates.

A common approach to assessing components is to
take weighted scores against a list of attributes and
aggregate them. An expert’s holistic view of a candidate
may incorporate interplay between attributes – conflicting
or reinforcing its suitability. This interplay can be
recorded as a series of relations between attributes. Rules
associated with these relations can then interact with the
candidate’s “scores” against attributes and their overall
evaluation. This interplay between attributes is lost in a
numerical aggregation. In this paper we describe our
approach to selecting components, which works from a
specification of the ideal component, then uses machine
learning and test case generation techniques to train the
system to automatically evaluate candidate components.
Our Selector system automates the determination of rules
and building the knowledge base so that the user interface
is simple and intuitive. We address the issues of
scalability, attribute interplay and the ability to explain
the reasoning behind a selection decision.

The following section discusses component selection,
AI techniques and the application of AI to component
selection. Section 3 describes our Machine Learning
approach to selection. A case study is presented in
Section 4. The CdCE Project is described in Section 5,
with conclusions and future work in Section 6.

2. Related work

Selection of components is a similar problem to selection
of Commercial Off-The-Shelf (COTS) software, and
COTS research can be applied to component selection.
Research in component selection begins with defining the
selection criteria. Most selection approaches have a
component model that describes the criteria or attributes
to be used in the assessment, often implemented as a
hierarchy. A discussion of these models is given in [3].
Other schemes develop a hierarchy for the specific
problem [4][5]. The relative importance of the criteria
may be determined using a structured approach such as
AHP [2][5]. An assessment of each component against

the criteria is then carried out, most often as a manual
process. A recommendation or ranking can then be
determined. This normally involves an aggregation of
results using the Weighted Scoring Method (WSM) or the
AHP [2]. In other cases, techniques such as Outranking
are used [6]. Recent research has begun to use AI
techniques to address issues with assessing components,
in particular the inherent problems with aggregating
results. Neuro-fuzzy [7] and Rough fuzzy sets [8] have
been used to deal with imprecision and uncertainty in
component assessment, while overcoming some
overheads of determining the original fuzzy sets. Most
techniques are more applicable to in-house repositories
where the documentation of components can be
standardised and detailed, with up to 1320 attributes for
each component [9]. Our project is concerned with third
party components sourced from a range of repositories.
We then have a very large number of components to
screen and rudimentary information about them. This
leads us to AI to carry out both coarse screening and more
in-depth analysis of the technical features of candidate
components. It is important that the overheads for the AI
technique are low as each selection process will have new
requirements and is thus a new problem.

Artificial Intelligence is a field that provides a range
of techniques for representing and processing knowledge.
When selecting an AI technique, it is important to
consider the features that are needed, and which are more
critical to the particular problem. In the component
selection problem, we are trying to classify the
components as being acceptable or rejected. We also want
to be able to adjust thresholds to include or exclude more
candidates, where criteria may have been too restrictive or
lenient. Working with metadata from various sources
introduces inconsistency to our data, so some tolerance
for missing or uncertain data is important.

Tables 1 and 2 in this document show how traditional
and hybrid AI systems perform against eight criteria, all
which are quite important for the automated selection of
components. Knowledge representation is important to
component selection as our process is working with the
metadata supplied by vendors and brokers, and the results
need to be understandable to users. As we will be
working with information from diverse sources, there is a
risk of missing and uncertain data. Many of the selection
criteria for components can be considered “a match” or
“not a match”, but the facility to deal with imprecision
may be more useful when looking at how well a
description meets our needs, e.g. how close the cost of the
component is to our ideal.

Our interest in AI is to automate the selection of
components. An automated assessment is unlikely to be
trusted unless there are explanation facilities to give the
reasoning behind any decisions. The traditional AI
systems that perform well on explanation ability rate

Table 1. Comparison of Traditional AI Techniques,
adapted from [10]

Feature

E
xp

er
t

Sy
st

em
s

Fu
zz

y
Sy

st
em

s

N
eu

ra
l

N
et

w
or

ks

G
en

et
ic

A

lg
or

it
hm

s

C
4.

5
C

la
ss

if
ic

at
io

n

Knowledge
representation

+ ++ -- - +

Uncertainty
tolerance

+ ++ ++ ++ -

Imprecision
tolerance

-- ++ ++ ++ --

Adaptability -- - ++ ++ ++
Learning ability -- -- ++ ++ ++
Explanation
ability

++ ++ -- - ++

Knowledge
discovery and
data mining

-- - ++ + +

Maintainability -- + ++ + ++

Table 2. Comparison of Hybrid AI Techniques

Feature
N

eu
ra

l E
xp

er
t

Sy
st

em
s

N
eu

ro
-f

uz
zy

Sy

st
em

s

E
vo

lu
ti

on
ar

y
N

eu
ra

l N
et

w
or

ks

Fu
zz

y
E

vo
lu

ti
on

ar
y

Sy
st

em
s

Knowledge
representation

+ ++ -- ++

Uncertainty
tolerance

++ ++ ++ ++

Imprecision
tolerance

++ ++ ++ ++

Adaptability ++ ++ ++ +
Learning ability ++ ++ ++ +
Explanation
ability

++ ++ -- ++

Knowledge
discovery and
data mining

-- - ++ +

Maintainability ++ ++ ++ +

poorly on adaptability, learning and maintenance. This
would lead to a trade off where the reasoning can be
explained, but there is a heavy load on the expert to
develop and tune rules – diminishing the advantage of
using AI. Neural expert or neuro-fuzzy systems may
overcome this, assuming we can generate data to train the
neural network. Our interest in looking for components

on the Internet does imply an interest in data mining and
an AI technique that can extend to knowledge discovery
would be an advantage. Although not one of the criteria
in the comparison tables, we also want to be able to deal
with the interplay between attributes. Any of expert
systems, fuzzy systems or neural networks is capable of
encoding these dependencies.

It is clear that an AI technique for component
selection would ideally rate well in all of the above
categories. For this investigation, we have chosen to use
the C4.5 decision tree classifier [11]. C4.5 takes labelled
data and grows a large tree which is pruned to create a
decision tree of understandable size. As can be seen in
Table 1, this approach rates well in all features except
uncertainty and imprecision tolerance. We will be
addressing these very important issues in future work by
investigating other AI techniques for classifying data. An
evaluation of the relative performance will then be carried
out.

3. Intelligent Selection

Any selection process begins with a requirements
specification for comparison with candidate components.
We work with an ideal specification based on an XML
Schema template [12]. The ideal specification includes
all attributes of interest to the application developer. The
specification is annotated with information regarding the
priority of attributes and any interplay between them. Our
system combines the ideal specification with the schema
definition to create an internal model of the desired
component. The system is not tied to the CdCE
component model and can import any XML Schema and
instance documents for a generic selection problem.

The attributes describing the components are split into
four categories, according to datatype. This binding is
determined from the Schema document. The simplest is
“string” where there can only be a single value per
candidate. An example is the dc:creator attribute –
the Dublin Core [13] tag representing the software
developer. We also have date and numeric attributes
where an optimal value is specified along with optional
minimum and maximum values. The final datatype is the
multiString. A multiString is used in situations where an
attribute can have one of a set of values. MultiString
attributes are split into multiple attributes for input into
the machine learning software. For example, the desired
values for the operatingSystem attribute may be
UNIX and Linux. We map these to
operatingSystem_UNIX and operating-
System_Linux for training data and the data to be
assessed.

An issue in using supervised learning techniques1 is
that they require either large amounts of historical data, or
a manual evaluation of input data. We have used
techniques from test data generation to create a set of
training data from the internal model of the ideal
component. Values for each attribute are grouped into
equivalence classes, and the attributes themselves are
grouped according to how they influence the evaluation.
The internal model provides enough information to
determine whether a component is accepted or rejected,
which is used to attach a result to the generated datasets.

Exhaustive generation of data is not practical. With
32 attributes in use of simple types (Boolean for this
calculation), we would need over 4,000 million data
entries to cover all combinations of the data. The
algorithm for generating the data targets groups of entries
as “lessons” to train the system to learn a specific aspect
of the assessment. The lessons first focus on
distinguishing datasets to help the system learn where the
border between acceptance or rejection of a component
lies. It also creates lessons around areas of complex
interaction between attributes to reinforce the learning
process. The size of the generated dataset is dependent
of the number of attributes in the selection task, and the
amount of interplay between them. Training the C4.5
classifier is not greatly affected by the size of the dataset,
and takes a few seconds. We have used the same data
with an Artificial Neural Network which takes over 20
minutes to generate the classifier.

A balance is required between the amount of data in
each output category. Early training sets oversimplified
the decision to “reject all” due to the selection of training
data. A component selection process is likely to reject a
high percentage of candidates, but using data that follows
that distribution skews the training. We are continuing to
investigate how to balance the training to work with an
optimal size and number of lessons. The best results to
date have come from generating between 1/2 to 2/3 of the
training data falling within the acceptable class.

4. Case Study

In this case study we revisit a manual selection exercise
working with real world data, updating it to use machine
learning. The scenario for the case study is the selection
of a software component to provide scientific calculator
functionality. The XML for the ideal specification is
given in Figure 1. It uses the CdCE Schema as a base

1 Supervised learning relies on a manual labelling of the training
data for the system to learn the patterns for each classification.
Unsupervised learning works with the patterns formed within
the training data and attempts to group them into clusters. Data
falling inside a cluster can them be labelled according the
closest cluster.

with 32 attributes in the following categories: three
numeric, one date, 21 String and seven multiString
(enumerated). The Schema allows some tags to be
repeated, which map to multiString attributes in our
system. Potential component information was taken from
four online sites. These had been assessed previously
with a manual application of the CdCE process. A
summary of that assessment is in Table 3. It gives an
indication of the rejection rate and the number of
possiblilites that would need to be considered in a
component selection problem. The automation of
selection is highly dependent on the adoption of a
standard specification format by component brokers.

The attributes used in the case study are shown in
Table 4. The attributes are classified as being mandatory,
preferred or other. Mandatory attributes must all be met
for the candidate to be accepted. A threshold value
modifies the number of preferred attributes that need to
be matched to accept the candidate. The other attributes
do not affect the assessment. This provides three
equivalence classes for our data generation. Test
generation uses equivalence classes to reduce the number
of test cases by having one value represent the whole
class of values, and may have rules for the output based
on the input class. For training the system, we use the
equivalence classes to enumerate the combinations of
attribute values inside and between classes, and the
corresponding classification for that component. In this
case, three of the attributes are mandatory and five are
preferred, the remaining attributes are categorised as
other. We have arbitrarily selected a threshold of 0.5
which rounds down to two out of five preferred attributes
for acceptance.

We use the Weka system [15] to access machine
learning algorithms. Weka uses ARFF format files where
attributes and values are listed, then the training and/or
test data. For supervised learning, the last attribute
denotes the classification of the entry, in this case
result=accept/reject. As mentioned previously,
the generated training data is grouped into lessons. We
start with lessons in acceptable attribute values, then look
at what values will lead to rejection. Parameters on the
generation can adjust the number and size of lessons. The
lessons focus on the patterns of attribute values that are
near the border of acceptable/unacceptable. Random
selection of training data would almost certainly result in
all candidates being classified as rejected. Our solution is
to apply Boundary Value Analysis (BVA) techniques.
We select training data that sits close to the boundary
between acceptance and rejection, along with some more
straight-forward entries. This has prevented the classifier
from over-simplifying its decision tree and allows us to
work with relatively small training sets.

Table 3. Case Study Manual Assessment [14]

Site
Number of

entries
Number of
candidates

I >8,000 1
II >12,000 7
III >36,000 4
IV >30,000 0

Total >86,000 9 (3 duplicates)

Table 4. Case Study Ideal Specification

Attribute Type Importance Values

Description Multi-
String

Mandatory
Scientific
Calculator

Development
Status

String Mandatory Mature

Licence String Preferred GPL
Price Numeric Preferred $0-$75
Development
Language

Multi-
String

Preferred
Java
C++

Operating
System

Multi-
String

Mandatory Linux

Memory Numeric Preferred 5-70Mb
Disk Space Numeric Preferred 10-90Mb

Figure 1. Ideal Specification in XML

Our system provides great flexibility in the generation
of training data. We use Weka’s implementation of the
C4.5 classifier which outputs a decision tree. It also gives
an analysis of the resultant tree’s performance against the
training and test data. The derived decision tree matched
the model of the candidate selection criteria and when
applied to the training data, it correctly classified 100%
entries. Another test of the classifier was run against
simulated data and correctly classified all the components
and selected 27 out of 2000 components as potential
candidates.

We then ran the trained classifier over real component
data where it identified 17 suitable components for the

578 that were considered. Although the four repositories
offered over 86,000 entries, we worked with a subset of
those matching the search criterion “calculator” as manual
conversion of all entries to XML was impractical.
Incorrect results were given for less than 7% of the data,
in situations where values for attributes were missing.
Classification of missing data is one of the limitations of
C4.5. If it has not seen a particular value for an attribute,
it will still try to classify the instance according to its
decision tree, with unpredictable results. In our data,
missing information was replaced with “-” for text
attributes and -1 or 1000 for numeric attributes. We are
investigating the substitution of average or default values
for missing values, as well as alternate Machine Learning
approaches to improve the handling of missing data.

At this point, we can consider updating or tuning the
ideal specification. Using the facilities provided by
Weka, we can look at the component data as individual
attributes or as groups of attributes. Statistical
information about individual attributes helps us to adjust
ranges for numeric values. Clustering tools help us to
find components that have a similar profile to our ideal
specification. We can then adjust the ideal specification,
retrain the classifier and re-run the component data to get
a tighter match on suitable components.

5. Context-driven Component Evaluation2

This work is part of the CdCE Project. The Project
aims to develop strategies for the assessment of software
components, both through static comparison of developer
requirements to a candidate component specification and
by generating context-driven tests for the dynamic
assessment of short-listed components. We address the
issues of sourcing, selection and evaluation of software
components, with indirect benefits in testing and trust.
The process is driven by a specification of the ideal
component and its operating context, which provides a
foundation for the automation of the selection process.
We focus on the selection of third party components from
commercial and open source brokers and repositories
where the format and detail of component documentation
can vary widely.

An important attribute of third party software
components is that they are written for the general case.
They then require contextual information and testing to
fully evaluate their suitability to an application [16]. The
developer needs to know that the component is not only
reliable and meets its specification, but that it is suited to
the target system. Component certification can improve
confidence and trust, but is not sufficient reason for a
particular selection as it does not take context into

2 Formerly known as the Context-driven Component Testing
(CdCT) project

account and cannot ensure that a component will behave
correctly in another environment [17]. Our ideal
component specification includes details of the
requirements for the component and aspects of the target
system to allow a context-aware evaluation of a
component's suitability.

Figure 2 shows our process for component evaluation.
In the first step we define the requirements which become
the ideal component specification. The ideal component
is specified on two levels, metadata for descriptive
information, and a formal specification of the interfaces
and behaviour in Z notation. Step 2 searches for
candidates matching the ideal specification, resulting in a
short-list for further examination. Abstract test cases are
generated for the components in Step 3, based on the
formal specification of the ideal component. The tests
can also be used for system and regression testing. An
adaptation model is developed for each candidate in Step
4 and used to adapt the abstract test cases to match each
of the short-listed candidates.

Figure 2. Activity diagram for CdCE Process

The tests are executed against the candidates in Step 5,
and the test and short-listing results are combined in Step
6 to get an overall picture for each component. In Step 7
we look at the results across the candidate components to
generate a comparison. This may involve aggregation for
scores against criteria, or other methods such as the C4.5
classifier described in this paper. We can then move to
Step 8 and provide a recommendation for component

selection, including reasons behind the recommendation,
and information to assist in adapting and integrating the
component. A more detailed description of the process
appears in [18] and [14]. We are currently developing a
tool to assist developers through the CdCE process,
linking to classification and test generation software and
compiling the results of each step for generation of the
recommendation(s) in Step 8.

6. Conclusion

We have explored the use of Machine Learning
algorithms for the selection of software components. Our
case study results show promise, with the generated data
training the C4.5 classifier and providing an appropriate
decision tree. It then gave correct classification for all
candidate components (in minutes) compared with a
manual approach which missed some candidates and took
over eight hours. Our training data generation overcomes
a major issue with supervised Machine Learning in that it
does not require large amounts of historical or statistical
data as we generate the training data and labels
(accept/reject) from a model. We also address the
problems of aggregation-based component selection
approaches where the relationships between components
are lost.

Machine Learning is not normally economical for
one-off classification problems. Each new search for a
component is a new problem with different selection
criteria. Our approach works from the ideal specification,
which is always necessary for component selection. We
automate the training data generation from the ideal
specification using generic techniques and can easily train
for the selection task at hand. The result is a considerable
automation of the selection process requiring a small
amount of expert time. We are currently applying this to
the short-listing or filtering stage of component selection,
but it can also be used for the more technical evaluation
required later in the selection process (Step 7 of CdCE
Process). The Machine Learning tools can also be used to
adjust or tune the ideal specification based on statistical
and clustering information.

This work is one way that AI can be applied to benefit
those in the computing community. We plan to extend
this work by investigating and evaluating other classifiers
and Neural Networks to further utilise the generated
training data for supervised learning of component
selection criteria. We are also looking at improving the
data representation so that more information can be fed
back into the process via clustering and other learning
techniques.

References

[1] C. Szyperski, Component software: beyond object-oriented
programming. New York: ACM Press, 1997.

[2] T. L. Saaty, “The Analytical Hierarchy Process”, McGraw-
Hill, 1990

[3] S. Sassi, L. Jilani and H. Ghezala, “COTS Characterization
Model in a COTS-based Development Environment”, Asia-
Pacific Software Engineering Conference (APSEC),
Chiang Mai, Thailand, 10-12 December, 2003

[4] J. Kontio, “OTSO: A Systematic Process for Reusable
Software Component Selection”. Tech. Report UMIACS-
TR-95-63, University of Maryland, 1995.

[5] M. Ochs, D. Pfahl, G. Chrobok-Diening and Nothhelfer-
Kolb, “A Method for Effective Measurement-based COTS
Assessment and Selection – Method Description and
Evaluation Results”. Tech. Report IESE-055.00/E,
Fraunhofer IESE, 2000.

[6] M. Morisio and A. Tsoukis, “IusWare: a Methodology for
the Evaluation and Selection of Software Products”, IEEE
Proceedings of Software Engineering, Vol. 144(3), pp. 162-
174, June 1997.

[7] Y.-H. Kuo, J.-P. Hsu and M.-F. Horng, “Neuro-fuzzy
Based Search Robot for Software Components”,
International Journal on Artificial Intelligence Tools,
Vol.8(2), pp. 119-135, 1999.

[8] D.V. Rao and V.V.S. Sarma, “A Rough:Fuzzy Approach
for Retrieval of Candidate Components for Software
Reuse”, Pattern Recognition Letters, 26(6), March, 2003.

[9] S. Nakkrasae, P. Sophatsathit and W.R. Edwards, Jr,
“Fuzzy Subtractive Clustering Based Indexing Approach
for Software Components Classification”, Proceedings of
the 1st ACIS International Conference on Software
Engineering Research & Applications (SERA'03), San
Francisco, USA., June 25-27, 2003, pp. 100-105.

[10] M. Negnevitsky, “Artificial Intelligence:A Guide to
Intelligent Systems”, Addison Wesley, 2002

[11] J. Ross Quinlan, “C4.5: programs for machine learning”,
Morgan Kaufmann Publishers Inc., CA, 1993

[12] World Wide Web Consortium. "XML Schema" [Web
page]. Accessed 20/12/2003, from the WWW:
http://www.w3.org/XML/Schema, 2003.

[13] Dublin Core Metadata Initiative. "DCMI Website."
Accessed 20/12/02, from the World Wide Web:
http://www.dublincore.org/, 2002

[14] V. Maxville. “Context-driven Component Testing Project
Website” [web page]. Accessed 6/9/03, from the WWW:
http://www.scis.ecu.edu.au/research/PhD/vmaxvill/, 2003

[15] I. Witten and E. Frank, “Data Mining: Practical Machine
Learning Tools and Techniques with Java
Implementations”, Morgan Kaufmann Publishers, 2000.

[16] E. Weyuker, “Testing Component-based Software: A
Cautionary Tale”. IEEE Software, 15(5), pp. 54-59., 1998

[17] A. Cechich, M. Piattini, and A. Vallecillo, “Assessing
Component-based Systems”, In: Cechich et al. (Eds.)
Component-Based Software Quality, LNCS 2693, pp. 1-
20, Springer-Verlag Berlin Heidelberg2003.

[18] Maxville, V., Lam, C. P. and J. Armarego “Selecting
Components: a Process for Context-Driven Evaluation”,
Asia-Pacific Software Engineering Conference (APSEC),
Chiang Mai, Thailand, 10-12 December, 2003

http://www.w3.org/XML/Schema
http://www.dublincore.org/
http://www.scis.ecu.edu.au/research/PhD/vmaxvill/

This page left intentionally blank.

