Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Intelligent content-based image retrieval framework based on semi-automated learning and historic profiles

Chung, Kien- Ping (2007) Intelligent content-based image retrieval framework based on semi-automated learning and historic profiles. PhD thesis, Murdoch University.

PDF - Front Pages
Download (170kB)
PDF - Whole Thesis
Download (1MB)


Over the last decade, storage of non text-based data in databases has become an increasingly important trend in information management. Image in particular, has been gaining popularity as an alternative, and sometimes more viable, option for information storage. While this presents a wealth of information, it also creates a great problem in retrieving appropriate and relevant information during searching. This has resulted in an enormous growth of interest, and much active research, into the extraction of relevant information from non text-based databases. In particular,content-based image retrieval (CBIR) systems have been one of the most active areas of research.

The retrieval principle of CBIR systems is based on visual features such as colour, texture, and shape or the semantic meaning of the images. To enhance the retrieval speed, most CBIR systems pre-process the images stored in the database. This is because feature extraction algorithms are often computationally expensive. If images are to be retrieved from the World-Wide-Web (WWW), the raw images have to be downloaded and processed in real time. In this case, the feature extraction speed becomes crucial. Ideally, systems should only use those feature extraction algorithms that are most suited for analysing the visual features that capture the common relationship between the images in hand. In this thesis, a statistical discriminant analysis based feature selection framework is proposed. Such a framework is able to select the most appropriate visual feature extraction algorithms by using relevance feedback only on the user labelled samples. The idea is that a smaller image sample group is used to analyse the appropriateness of each visual feature, and only the selected features will be used for image comparison and ranking. As the number of features is less, an improvement in the speed of retrieval is achieved. From experimental results, it is found that the retrieval accuracy for small sample data has also improved. Intelligent E-Business has been used as a case study in this thesis to demonstrate the potential of the framework in the application of image retrieval system.

In addition, an inter-query framework has been proposed in this thesis. This framework is also based on the statistical discriminant analysis technique. A common approach in inter-query for a CBIR system is to apply the term-document approach. This is done by treating each image's name or address as a term, and the query session as a document. However, scalability becomes an issue with this technique as the number of stored queries increases. Moreover, this approach is not appropriate for a dynamic image database environment. In this thesis, the proposed inter-query framework uses a cluster approach to capture the visual properties common to the previously stored queries. Thus, it is not necessary to 'memorise' the name or address of the images. In order to manage the size of the user's profile, the proposed framework also introduces a merging approach to combine clusters that are close-by and similar in their characteristics. Experiments have shown that the proposed framework has outperformed the short term learning approach. It also has the advantage that it eliminates the burden of the complex database maintenance strategies required in the term-document approach commonly needed by the interquery learning framework. Lastly, the proposed inter-query learning framework has been further extended by the incorporation of a new semantic structure. The semantic structure is used to connect the previous queries both visually and semantically. This structure provides the system with the ability to retrieve images that are semantically similar and yet visually different. To do this, an active learning strategy has been incorporated for exploring the structure. Experiments have again shown that the proposed new framework has outperformed the previous framework.

Item Type: Thesis (PhD)
Murdoch Affiliation(s): School of Information Technology
Supervisor(s): Fung, Lance and Wong, Kevin
Item Control Page Item Control Page


Downloads per month over past year