Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Adaptation of Quinoa (Chenopodium quinoa Willd.) to Australian Environments

Snowball, R., Dhammu, H.S., D’Antuono, M.F., Troldahl, D., Biggs, I., Thompson, C., Warmington, M., Pearce, A. and Sharma, D.L. (2022) Adaptation of Quinoa (Chenopodium quinoa Willd.) to Australian Environments. Agronomy, 12 (9). Art. 2026.

[img]
Preview
PDF - Published Version
Download (3MB) | Preview
Free to read: https://doi.org/10.3390/agronomy12092026
*No subscription required

Abstract

Quinoa is being evaluated in cropping systems in many countries outside of its natural range of South America. Very few attempts have been made by farmers or researchers to grow or evaluate quinoa under Australian environments. Given the growing popularity of quinoa with consumers, new commercial opportunities for farmers and international interest in the crop, it was timely to undertake a comprehensive evaluation of the potential of quinoa in Australia. Two advanced selections and nine germplasm lines (six of Chilean and three of Bolivian origin) identified in an earlier project were tested in 23 field trials at 14 locations on mainland Australia. Targets included irrigated sites in tropical, Mediterranean, semi-arid and desert climates, and rain-fed sites of south-western Australia with a Mediterranean climate. The field experiments were either a randomised complete block design (RBCD) or a split plot/factorial design with 2–4 replicates, and a linear mixed model was used to compare the treatment lines. Seed yield of quinoa was highest when grown in winter and spring under rain-fed conditions in Geraldton, in spring and summer under irrigation at Bool Lagoon, and summer, autumn and winter under irrigation at Leeton. The highest seed yield achieved was 3 t/ha for a germplasm line from Chile, while the highest yield for a germplasm line from Bolivia was 2.6 t/ha. Advanced selections from Australia yielded well in comparison at most trial sites. Declining seed yield was associated with mean daily temperatures during seed development increasing above 17 °C, mean daily temperatures during flowering declining below 15 °C, and rainfall during seed development under rain-fed conditions falling below 50 mm. Seed produced at Bool Lagoon was the closest in colour to white quinoa imported from Peru; however, it was more than noticeably different. Seed produced at Geraldton and Leeton was significantly larger than from other field sites; however, none were larger than 2 mm in diameter as found in Royal white quinoa from Bolivia. Superior seed colour and seed size were associated with dry conditions at maturity and cool conditions during seed development, respectively. We conclude that quinoa can become a potential crop option for Australian agriculture by exploiting genetic diversity and supplementing with suitable management practices matched to agro-climatic environments. There are reasonable prospects to raise the seed yield potential in areas in all states, especially in the regions where quinoa grew well in our experiments.

Item Type: Journal Article
Murdoch Affiliation(s): College of Science, Health, Engineering and Education
Publisher: MDPI
Copyright: © 2022 by the authors.
URI: http://researchrepository.murdoch.edu.au/id/eprint/66211
Item Control Page Item Control Page

Downloads

Downloads per month over past year