Doping sodium tungsten Bronze-Like (Na5W14O44) Near-Infrared shielding functional units in bulk borosilicate glasses for Energy-Saving window applications
Yang, G., Hu, D., Xia, F.ORCID: 0000-0002-4950-3640, Yang, C., Liu, Y., He, X., Shpotyuk, Y., Chen, H. and Gao, Y.
(2022)
Doping sodium tungsten Bronze-Like (Na5W14O44) Near-Infrared shielding functional units in bulk borosilicate glasses for Energy-Saving window applications.
ACS Applied Materials & Interfaces, 14
(28).
pp. 32206-32217.
*Subscription may be required
Abstract
Tungsten bronze is an effective near-infrared (NIR) shielding material for fabricating energy-saving smart windows. While high-performing NIR-shielding glasses can be fabricated by coating a tungsten bronze film on window glasses, these glasses suffer a short lifespan due to the adhesion and degeneration of film. In this work, we show that tungsten bronze-like material Na5W14O44 can be distributed in the bulk glass matrix during the facile melt-quenching glass fabrication process under an air atmosphere, overcoming the limitations of film-based glasses. X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy confirmed the presence of tungsten bronze-like Na5W14O44 functional units in the SiO2–B2O3–NaF glass matrix. The addition of a small amount of H2WO4 and Sb2O3 is critical for the formation of Na5W14O44 functional units because H2WO4 provides W for Na5W14O44, and Sb2O3 acts as a reducing agent that helps the formation of W5+ in Na5W14O44 under an air atmosphere. Furthermore, the NIR-shielding ability can be tuned by adjusting the concentration of Sb2O3 in the range of 0–1.5 mol % and of H2WO4 in the range of 4–6 mol %. The optimized composition containing 1.25 mol % of Sb2O3 and 5 mol % of H2WO4 exhibits excellent NIR-shielding ability (ΔT = 62.8%), high visible light transmittance (Tmax = 67.7%), and excellent thermal insulation. This performance is comparable to cesium tungsten bronze film-based glasses and much better than soda lime glass and ITO glass under sun irradiation. This study sheds light on fabricating energy-saving windows in a simple and cost-effective way with flexibility for fine tuning of NIR-shielding performance.
Item Type: | Journal Article |
---|---|
Murdoch Affiliation(s): | Harry Butler Institute |
Publisher: | American Chemical Society |
Copyright: | © 2022 American Chemical Society |
URI: | http://researchrepository.murdoch.edu.au/id/eprint/65578 |
![]() |
Item Control Page |