Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Screening of chickpea genotypes for boron biofortification potential

Mehboob, N., Rizwan, M.S., Minhas, W.A., Yasir, T.A., Al-Mohaimeed, A.M., Elshikh, M.S. and Hussain, M. (2022) Screening of chickpea genotypes for boron biofortification potential. Journal of King Saud University - Science, 34 (6). Art. 102190.

[img]
Preview
PDF - Published Version
Download (2MB) | Preview
Free to read: https://doi.org/10.1016/j.jksus.2022.102190
*No subscription required

Abstract

Background

Malnutrition is a significant threat to mankind and deficiency of important minerals like boron (B) exert negative impacts on human health mostly in developing and least developed countries. Chickpea is an important legume with wide consumption in human diet due to easily digestible dietary protein and grown. Chickpea is mostly grown in arid and semi-arid regions of Pakistan. The B-deficiency in these areas not only decreases chickpea productivity, but also results lowers B concentration in grains. Different chickpea genotypes are capable of perform differently due to their divergent genetic makeup under stressful environmental conditions. Therefore, this field study screened different chickpea genotypes to improve yield and B biofortification.

Methods

For this purpose 20 ‘desi’ (i.e., ‘TG-1430’, ‘Parbat’, ‘TG-1616’, ‘TG-1620’, ‘05A028’, ‘TG-1601’, ‘TG-1623’, ‘Thal-2006’, ‘TG-1218’, ‘TG-1513’, ‘Chattan’, ‘BK-2011’, ‘TG-1500’, ‘NIAB-2016’, ‘GGP-1456’, ‘TG-1618’, ‘TG-1619’, ‘Bittle-2016’, ‘TG-1415’ and ‘Punjab-2008’) and 06 ‘kabuli’ (i.e., ‘TGK-228’, ‘TGK-1767’, ‘TGK-1802’, ‘NOOR-2009’, ‘TGK-1761’ and ‘TGK-1805’) chickpea genotypes were sown under 0 or 1 kg B ha−1 as soil application.

Results

Results indicated that B application improved the growth, nodulation, yield and grains B concentrations of all genotypes; however, genotype significantly differed in their response. Of the 20 ‘desi’ genotypes ‘Punjab-2008’ recorded the highest leaf area index, leaf area duration, crop growth rate, nodulation, yield and related traits under B application. However, genotypes ‘BK-2011’, ‘TG-1500’ and ‘NIAB-2016’ had higher grains B content under 1 kg ha−1 B application. Similarly, ‘kabuli genotypes’, i.e., ‘TGK-1761’ and ‘TGK-1802’ recorded higher nodulation, while ‘NOOR-2009’ had higher leaf area index, leaf area duration, crop growth rate, 1000-grain weight, grain yield and biological yield with 1 kg ha−1 B application compared to the rest of the ‘kabuli’ genotypes included in the study. The highest grain B concentration was recorded for ‘TGK-1767’ among ‘kabuli’ genotypes.

Conclusion

In conclusion, ‘desi’ genotype ‘Punjab-2008’ and ‘kabuli’ genotype ‘NOOR-2009’ should be grown under 1 kg ha−1 B application to get higher productivity and B biofortification. The genotypes which accumulated more B in their seeds should be included in future breeding programs to produce B-rich grains for reducing malnutrition.

Item Type: Journal Article
Murdoch Affiliation(s): School of Veterinary and Life Sciences
Publisher: Elsevier B.V. on behalf of King Saud University.
Copyright: © 2022 The Authors.
URI: http://researchrepository.murdoch.edu.au/id/eprint/65448
Item Control Page Item Control Page

Downloads

Downloads per month over past year