Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Identifying the most effective behavioural assays and predator cues for quantifying anti-predator responses in mammals: A systematic review protocol

Harrison, N.D., Phillips, B.L., Hemmi, J.M., Wayne, A.F., Steven, R. and Mitchell, N.J. (2021) Identifying the most effective behavioural assays and predator cues for quantifying anti-predator responses in mammals: A systematic review protocol. Environmental Evidence, 10 (1). Art. 38.

PDF - Published Version
Download (1MB) | Preview
Free to read:
*No subscription required



Mammals, globally, are facing population declines. Strategies increasingly employed to recover threatened mammal populations include protecting populations inside predator-free havens, and translocating animals from one site to another, or from a captive breeding program. These approaches can expose predator-naïve animals to predators they have never encountered and as a result, many conservation projects have failed due to the predation of individuals that lacked appropriate anti-predator responses. Hence robust ways to measure anti-predator responses are urgently needed to help identify naïve populations at risk, to select appropriate animals for translocation, and to monitor managed populations for trait change. Here, we outline a protocol for a systematic review that collates existing behavioural assays developed for the purpose of quantifying anti-predator responses, and identifies assay types and predator cues that provoke the greatest behavioural responses.


We will retrieve articles from academic bibliographic databases and grey literature sources (such as government and conservation management reports), using a Boolean search string. Each article will be screened for the satisfaction of eligibility criteria determined using the PICO (Population—Intervention—Comparator—Outcome) framework, to yield the final article pool. Using metadata extracted from each article, we will map all known behavioural assays for quantifying anti-predator responses in mammals and will then examine the context in which each assay has been implemented (e.g. species tested, predator cue characteristics). Finally, with mixed effects modelling, we will determine which of these assays and predator cue types elicit the greatest behavioural responses (standardised difference in response between treatment and control groups). The final review will highlight the most robust methodology, will reveal promising techniques on which to focus future assay development, and will collate relevant information for conservation managers.

Item Type: Journal Article
Publisher: BMC part of Springer Nature
Copyright: © 2020 The Authors.
Item Control Page Item Control Page


Downloads per month over past year