Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Ontogenetic shift in diet of a large elapid snake is facilitated by allometric change in skull morphology

Patterson, M., Wolfe, A.K., Fleming, P.A.ORCID: 0000-0002-0626-3851, Bateman, P.W., Martin, M.L., Sherratt, E. and Warburton, N.M.ORCID: 0000-0002-8498-3053 (2022) Ontogenetic shift in diet of a large elapid snake is facilitated by allometric change in skull morphology. Evolutionary Ecology, 36 . pp. 489-509.

PDF - Published Version
Download (3MB) | Preview
Free to read:
*No subscription required


As snakes are limbless, gape-limited predators, their skull is the main feeding structure involved in prey handling, manipulation and feeding. Ontogenetic changes in prey type and size are likely to be associated with distinct morphological changes in the skull during growth. We investigated ontogenetic variation in diet from stomach contents of 161 Dugite specimens (Pseudonaja affinis, Elapidae) representing the full range of body size for the species, and skull morphology of 46 specimens (range 0.25–1.64 m snout-vent-length; SVL). We hypothesised that changes in prey type throughout postnatal ontogeny would coincide with distinct changes in skull shape. Dugites demonstrate a distinct size-related shift in diet: the smallest individuals ate autotomised reptile tails and reptiles, medium-sized individuals predominantly ate mammals, and the largest individuals had the most diverse diet, including large reptiles. Morphometric analysis revealed that ~40% of the variation in skull shape was associated with body size (SVL). Through ontogeny, skulls changed from a smooth, bulbous cranium with relatively small trophic bones (upper and lower jaws and their attachments), to more rugose bones (as a likely reflection of muscle attachment) and relatively longer trophic bones that would extend gape. Individual shape variation in trophic bone dimensions was greater in larger adults and this likely reflects natural plasticity of individuals feeding on different prey sizes/types. Rather than a distinct morphological shift with diet, the ontogenetic changes were gradual, but positive allometry of individual trophic bones resulted in disproportionate growth of the skull, reflected in increased gape size and mobility of jaw bones in adults to aid the ingestion of larger prey and improve manipulation and processing ability. These results indicate that allometric scaling is an important mechanism by which snakes can change their dietary niche.

Item Type: Journal Article
Murdoch Affiliation(s): Harry Butler Institute
Publisher: Springer Netherlands
Copyright: © 2022 The Authors.
Item Control Page Item Control Page


Downloads per month over past year