Solution-phase decomposition of ferrocene into wüstite-iron oxide core–shell nanoparticles
Loedolff, M.J., Fuller, R.O., Nealon, G.L., Saunders, M., Spackman, M.A. and Koutsantonis, G.A. (2022) Solution-phase decomposition of ferrocene into wüstite-iron oxide core–shell nanoparticles. Dalton Transactions .
*Subscription may be required
Abstract
We report an improved method for the controlled solvent-phase decomposition of ferrocene into highly crystalline monodisperse iron oxide nanoparticles at relatively low temperatures. Solution-phase decomposition of ferrocene into nanoparticles has received little attention in the literature, due to the percieved stability of ferrocene. However, we synthesised wüstite FeO-iron oxide core–shell nanoparticles by thermally decomposing ferrocene in 1-octadecene solvent and in the presence of oleic acid and oleylamine, as surfactants. We report procedures that provide cubic and spherical core–shell iron oxide nanoparticles whose size (29.3 ± 2.3 nm for spheres, 38.6 ± 6.9 nm for distorted cubes and 23.5 ± 2.4 nm for distorted cubes with concave faces) and shape can be controlled through simple adjustments to reaction parameters. Transmission electron microscopy, scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, electron energy-loss spectroscopy and powder X-ray diffraction analysis methods were used to characterise the nanoparticles.
Item Type: | Journal Article |
---|---|
Murdoch Affiliation(s): | Vice Chancellery |
Publisher: | Royal Society of Chemistry |
Copyright: | © 2022 Royal Society of Chemistry |
URI: | http://researchrepository.murdoch.edu.au/id/eprint/63537 |
![]() |
Item Control Page |