Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

A new deep learning calibration method enhances Genome-Based prediction of continuous crop traits

Montesinos-López, O.A., Montesinos-López, A., Mosqueda-González, B.A., Bentley, A.R., Lillemo, M., Varshney, R.K.ORCID: 0000-0002-4562-9131 and Crossa, J. (2021) A new deep learning calibration method enhances Genome-Based prediction of continuous crop traits. Frontiers in Genetics, 12 . Art. 798840.

[img]
Preview
PDF - Published Version
Download (1MB) | Preview
Free to read: https://doi.org/10.3389/fgene.2021.798840
*No subscription required

Abstract

Genomic selection (GS) has the potential to revolutionize predictive plant breeding. A reference population is phenotyped and genotyped to train a statistical model that is used to perform genome-enabled predictions of new individuals that were only genotyped. In this vein, deep neural networks, are a type of machine learning model and have been widely adopted for use in GS studies, as they are not parametric methods, making them more adept at capturing nonlinear patterns. However, the training process for deep neural networks is very challenging due to the numerous hyper-parameters that need to be tuned, especially when imperfect tuning can result in biased predictions. In this paper we propose a simple method for calibrating (adjusting) the prediction of continuous response variables resulting from deep learning applications. We evaluated the proposed deep learning calibration method (DL_M2) using four crop breeding data sets and its performance was compared with the standard deep learning method (DL_M1), as well as the standard genomic Best Linear Unbiased Predictor (GBLUP). While the GBLUP was the most accurate model overall, the proposed deep learning calibration method (DL_M2) helped increase the genome-enabled prediction performance in all data sets when compared with the traditional DL method (DL_M1). Taken together, we provide evidence for extending the use of the proposed calibration method to evaluate its potential and consistency for predicting performance in the context of GS applied to plant breeding.

Item Type: Journal Article
Murdoch Affiliation(s): Centre for Crop and Food Innovation
Western Australian State Agricultural Biotechnology Centre
Publisher: Frontiers
Copyright: © 2021 Montesinos-López et al.
URI: http://researchrepository.murdoch.edu.au/id/eprint/63483
Item Control Page Item Control Page

Downloads

Downloads per month over past year