Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Cross-amplification of EST-derived markers among 16 grass species

Zeid, M., Yu, J.K., Goldowitz, I., Denton, M.E., Costich, D.E., Jayasuriya, C.T., Saha, M., Elshire, R., Benscher, D., Breseghello, F., Munkvold, J., Varshney, R.K.ORCID: 0000-0002-4562-9131, Belay, G. and Sorrells, M.E. (2010) Cross-amplification of EST-derived markers among 16 grass species. Field Crops Research, 118 (1). pp. 28-35.

Link to Published Version:
*Subscription may be required


The availability of a large number of expressed sequence tags (ESTs) has facilitated the development of molecular markers in members of the grass family. As these markers are derived from coding sequences, cross-species amplification and transferability is higher than for markers designed from genomic DNA sequences. In this study, 919 EST-based primers developed from seven grass species were assessed for their amplification across a diverse panel of 16 grass species including cereal, turf and forage crops. Out of the 919 primers tested, 89 successfully amplified DNA from one or more species and 340 primers generated PCR amplicons from at least half of the species in the panel. Only 5.2% of the primers tested produced clear amplicons in all 16 species. The majority of the primers (66.9%) were developed from tall fescue and rice and these two species showed amplification rate of 41.6% and 19.0% across the panel, respectively. The highest amplification rate was found for conserved-intron scanning primers (CISP) developed from pearl millet (91%) and sorghum (75%) EST sequences that aligned to rice sequences. The primers with successful amplification identified in this study showed promise in other grass species as demonstrated in differentiating a set of 13 clones of reed canary grass, a species for which very little genomic research has been done. Sequences from the amplified PCR fragments indicated the potential for the transferable CISP markers for comparative mapping purposes. These primer sets can be immediately used for within and across species mapping and will be especially useful for minor grass species with few or no available molecular markers.

Item Type: Journal Article
Publisher: Elsevier BV
Copyright: © 2010 Elsevier B.V.
Item Control Page Item Control Page