How might you tell the difference between a plant with white grains and its clone with black grains when buying the grains via a smartphone application that might display one image, or both (as above) if the plant segregates via a 50:50 black to white colour ratio based on a myriad of environmental entanglements if one is a deepfake image of the other? Ethical cloning of plant and animal varieties has resulted in the rapid expansion of food and beverages derived from plants and animals. In turn, fuelling increased population growth, and along with it, increased demand for exotic foods and drinks derived thereof. Wild Tibetan barley is arguably the most exotic of all concerning its evolutionary canyon and its cultural significance. Digital manipulation (digitalisation) of species through genetic sequencing, computer science, telecommunications and A.I. ‘digital twin games’, can rapidly increase the development and ethical release of these real, digital clones into new environments. However, is it ethical to digitalise a species, and who might be the winners and who are the losers? These are the realities in the bio-physics ethics debate very much at the centre of globalisation. The collection of raw data, including for digital twins’ clones’, may reveal revolutionary insights but also increase uncertainty about environmental variability concerning biological population genetics. Bias concerning the unacknowledged inheritance of software dependencies used by A.I. scientists is a separate quest; through digital algorithm manipulation (deepfake games). The potential damage an encrypted deepfake genetic market might do to both us and our environment, is a significant cause for concern.
DATA-DRIVEN, MEDITERRANEAN, A.I. SIMULATIONS AND THE ETHICAL IMPLICATIONS OF EMBEDDED QUALITATIVE BIAS IN DIGITAL TWIN DEEPFAKE GAMES

‘Looking out across the digital ocean as far as the eye can see. A Neon vision.’

Image and poem by: Karl Benton West Svatos
3293058

College of Science, Health, Engineering and Education

-“Free Your Think”-
LEFT BLANK INTENTIONALLY
THESIS DECLARATION STATEMENT

I declare that the entire thesis and all the parts thereof are my own work that has not been submitted in conjunction with or for the conferral of another award or degree from any other institution in accordance with all appropriate ethical standards, policies, and guidelines concerning student candidacy as stated in Murdoch University’s student handbook. This thesis is submitted for conferral by the Murdoch University Senate, for the award, Doctor of Philosophy.

Student: Mr. Karl Benton West Svatos

Signed:

..

Dated:… 12-08-2021

..
ACKNOWLEDGEMENTS

If the award Doctor of Philosophy is based solely on one’s ability to think independently but then only write about the philosophically posited predispositions of other researchers/thinkers, would that thought still be independent? My scholarly mindset comes from my father. He took me to Berlin where scientists and philosophers like Plank, Einstein, Bohr, and Marx once lived. He inspires me every day. Family is everything.

Further trips to Los Angeles, Paris, London, New Dehli, Cairo, Beijing, Jakarta, Bangkok, Hanoi, and to Tokyo wetted my desire to pursue scientific thought through experiment. Each place intriguing in culture, and religion, but home has always been in Fremantle. I have had a passion for computers for as long as I can remember. Establishing a philosophical position on the ethics of embedded, standalone, A.I. games came later. PC’s were scarce in 1986 but I was fortunate enough to have one. An IBM. That PC gave me a ‘head start’. But it would take me another 30 years before I was offered an opportunity to enrol in a research degree at Murdoch University. The PhD research path. A childhood dream. Lacking any independent data fit for that purpose, and because no one believed that there was a need for, “such games,” I developed a thought experiment. One concerning relativistic proportionality. Learning how to wait shapes ideas, makes you agile, and helps you realise goals, but without help nothing is realistically possible. There are hurdles and challenges to overcome every day.

To Omi, and my to grandparents. RIP. To my mother and father, my uncle and aunt, my cousin, and to my fairy godmother, you are instrumental in my life. In helping me pave the road to get to this moment, no matter what happens, how small or grand, win lose or draw, pass or fail, you have shown me that following your passion will inevitably be rewarded, but it takes time. Rewards come in many shapes and forms. Somehow knowingly along the way, you have always been there. And if not, then in spirit. That was so desperately needed at times. Thank you. Without it, everything would be different.

To my Hero, my love. You give me hope when there is only despair and courage when I am afraid. You help me dream my dreams without fear. To my children, imagine and realise your vision. Do not be afraid to succeed at things (only you) know you are already good at. You are my all.
To Professor Michael Jones, I want to recognise your courageous effort in giving me tutelage, advice, guidance, support, and compassion. More importantly, thank you for giving me the resolve to see merit in my ideas, and for just listening to me when I needed someone to talk to. You, Sir, are a gentleman of the highest order; I will never forget your deeds. ‘Emmanuel Kant...’

To Doctor David Murray, your supportive ‘can do’ attitude is a real breath of fresh air in academia. I really enjoyed having you support my ideas, through your positive demeanour that always keeps me thinking on my toes about the most pressing technical matters concerning all areas of science, in a down to earth way. Thank you.

To the co-authors, colleagues, business partners, technical advisors, administrative research support-staff, assistants, fellow students, my extended family, and to my friends, hat’s off and a big cheers to you. To those who kindled a small fire inside my belly to inspire me into succeeding in my belief by saying “Karl, you need to stay focussed,” your help is appreciated in more ways than my own words can ever be conveyed on paper. “Nothing is inevitable.”
ABSTRACT

Put simply, the question that has intrigued me and led me to do a PhD is to undertake scientific research which gave me the opportunity to study the underlying ethical and philosophical bases of the research process itself. The thesis takes the reader through real-life studies which combine developing computational power with the handling of large datasets and the ethics of data collection and ownership. This journey resulted in the study and representation of real-life and in-silico or digitalised copies of research data (called digital twins) and compares their physical and in-silico representation from an ethical viewpoint.

Digital twins and deepfake imagery (computer simulations based on mathematical principles) may be used to verify significance of statistical outcomes during artificial simulations’ via computational processes. Deepfakes are a possible occidental progression due to increasingly complex environmental variation being used to explain adaptation, or an evolutionary process because variation is oft unable to be replicated in experiments, e.g. for political reasons.

A renaissance of informatics ‘big-data science;’ implementing adaptive real-time A.I. via digital twin construction, to predicted outcomes concerning simulations’ predictability themselves’, digital twins can be used to infer without disturbing system balance. Extensive implementations of this technology with adaptive frequency hopping based on Gaussian ‘pseudo-random signalling’ now exist. Several model species’ were selected including hairy marron, dairy farm cattle, and a unique Australian Tibetan barley. Using environmental data from the Mediterranean environment; environmental growth, habit, and sensory behaviour; digital twins’ predictions based on complementary statistical heuristics included incorporating genome sequences, and phenotype data through embedded kernalisation telematic software, for automated species informatics simulation. ‘Murdoch Twins’ was created to test whether TCP/IP latency data supporting machine learning programs, and visualisation statistics could alter both quantitative and qualitative outcomes (in a simulated game carried out in 2020 in Japan).

This thesis makes use of a series of quantitative experiments that were conceived, proposed, carried out, and are written up as four separate manuscripts (two results manuscripts published in 2018 and 2019 respectively, one abstract presented in Osaka Japan in 2018, and one manuscript currently under peer review), with seven supporting appendices (including industry
specific publications, data collection and analyses). The full contributions span two decades culminated in a move to Murdoch University in 2016. The final thesis product only possible by the award, of a fully funded, Murdoch University postgraduate research scholarship, administered by The Western Australian, State, Agricultural, and Biotechnology Center (SABC) under the tutelage of Professor Michael Jones. And has since generated significant research-related opportunities including, “PhD scholarship in digital connectivity and big-data analytics in agriculture”, administered through the newly coined ‘agtech group’ at Murdoch University. The research experiments were made possible through contributions including through the receipt of smaller financial bursaries (grant monies), in-kind contributions, corporate awards (purchased and/or borrowed equipment, including hired casual staff), or industry contributions. Some research was also personally funded, or earned through internships, further grants rewards, in-kind volunteering, and/or while consulting for Karl Corporation (including in Japan, through 2020 at Kazusa DNA Research Institute in Chiba Prefecture as a visiting professional informatics scientist).

The thesis, “Data-driven, Mediterranean, A.I. simulations and the ethical implications of embedded qualitative bias in digital twin deepfake games” contains an original, standalone, independently researched introduction, methodology, with the sequential and logical presentations of four manuscripts (results chapters), culminating in the general results titled, “Murdoch Twins: containerised .NET API backend data implementation for real-time deepfake games”, proceeded by the general discussion. As it relates to the thesis in its entirety; the combined output is the development of a new, computer-based, rapid, real-time, data visualisation strategy (and technique), that facilitated the creation of a digital twin called ‘Murdoch Twins.’ The purpose of Murdoch Twins is for rapidly measuring and quantifying, the digital authenticity of informatics analyses (via construction of a digital twin including for a confidential* Tibetan-Australian barley species; a type of doubled haploid population of almost identical genetic clones); based on complementary environmental, sequencer-based genotyping, phenotype data lakes (for the Mediterranean environment); through the creation of a trust enabled 5G/LTE, IoT, core to core, embedded kernel stack, to therefore test that it may be penetrated, remotely, (via VPN), with deepfake imagery, during a real-time A.I. game simulation (in a real-world scenario delivered through .NET APIs).

Implications deepfake games have regarding current real-world scenarios include real-time medicine, geophysical and A.I., predictions; but as it relates to the manuscripts and the central
The tenet of the thesis deepfake games concerns the ethical use of deepfake images to securely verify the digital authenticity of phenotype data, as it relates to environmental variation of raw ‘trusted’ data sources, and their use in qualitative descriptions (embedded bias).

The four manuscripts demonstrate that a methodological progression was followed, concerning the development of the aims and the hypothesis. Tables and figures throughout the thesis are sequential and are not broken up for individual manuscripts. Because of the strategic nature of the thesis, there were significant challenges along the way. To address this, each manuscript has a preamble, including its own declaration statement, that summarises the authors’ contributions’ at that time, as well a peroratory summation. Additional contributions, as they relate to the generation of each manuscript of the thesis (in terms of the overall aims and hypothesis) are addressed in 7 appendices. Contributions reflect the time required as follows.

1. Manuscript one: An independently researched, student-funded, sole-author, published manuscript (Karl Svatos (KS) contribution 100%),

2. Manuscript two: an independently researched, partially industry-funded (Dairy Australia Grant; UWA 13344), first-author, published manuscript (KS contribution 95%, (UWA staff 5% includes Em. Prof. Abbott (LA) contribution 3%)),
 - Original research description (visualisation stats) (Appendix 3 preamble)

3. Manuscript three: an, independently researched, privately funded, first-author, published conference, journal abstract (Osaka Japan, 2018),
 And two subsequent, corresponding, report-style projects with unpublished results (Project 1 and Project 2), and including one published, strategic white position paper associated with Project 1,
• Project 1; a student-led, partially industry-funded (GRDC Grant; UMU00049) collaboration between Murdoch University, The Western Australian Department of Primary Industries and Regional Development (DPIRD) (formerly Department of Agriculture), UWA, Scientific Aerospace, Karl Corporation, and The Western Crop Genetics Alliance (formerly Western Barley Genetics alliance and affiliated Australian institutions). (KS contribution 55%), (DPIRD staff 20% includes Dr. Diepeveen (DD) 10% and Prof. Li (CL) 5%), (Murdoch staff 10% includes DD 5% Prof. Jones (MJ) 2%, CL 1%, Dr. Murray (DM) 1%, Dr. Hill (CH) 1%), (UWA 3% includes LA 2%) (Scientific Aerospace includes Mr. Trowbridge RET. (GT) 2%) (Karl Corporation 10%).

• “Rapid downstream glasshouse field trial phenotype assessments for variability minimisation in GPU core processing and telematics data analyses”

• Project 2; a student-led, independently organised, resourced, and partially industry-funded, project collaboration between Murdoch University, UWA, DPIRD, Pivotel, Nokia-Bell, Microsoft, Precision Ag, Edith Cowan University (ECU), Kazusa DNA Research Institute (KDRI), and Karl Corporation (and affiliated partners). (KS contribution 30%), (Murdoch staff 25% includes MJ 15%, DM 10%), (DPIRD staff 10% includes DD 5%), (Pivotel, Nokia-Bell, Microsoft, Precision Ag, ECU, UWA, and KDRI 30%), (Karl Corporation 5%).

• “A scaleable, private LTE/4G, Boolean GPU networking stack for automated, remote, IoT decision making”

4. Manuscript 4; an industry-led, partially industry-funded, jointly student industry conceived, run, and managed, first author (unpublished), data-science research collaboration between iPREP, Murdoch University, ECU, and the industry partner udrew. (KS contribution 50%), (udrew 50% includes AR (Angela Recaldes) and ZA (Zubair Ahmed) 10%).

• “Heuristics enabled SAAS platform: remote geospatial machine learning of soil profiles from an ancient Mediterranean environment”

Each manuscript in the thesis is complete and acknowledges all authors’ and contributions’. Additional research methods, results, and discussion generated during this research are addressed in the disclaimer at the beginning of the methodology, and in the privacy and
confidentiality statement after the preamble of manuscript three. Individual appendices also contain declaration statements about the significance and relevance to the thesis aims and hypothesis, concerning co-authors’ contributions’ respectively (including Karl Corporation).

The research presented in this thesis shows that the rapid rise of data-driven ‘A.I., big-data science’, has an embedded, objective bias that quantitative computation cannot be used to solve in all real-time simulations. Predictions were supported through the creation of binary-tree data islands. Supporting technologies were connected through an embedded pythonic .NET API (AARCH64) and then utilised to create a digital twin to assess deepfake risk factors via the digital twin (concerning data, security, and ownership). The implications are substantial for this type of implementation due to the ever-expanding collection and use of said data to support qualitative interpretation for action by humans as it relates to A.I. ethics. This process may offer scientists, engineers, land managers, farmers and governments an advantage; knowing how a change (Δ) at any given time (t) might alter an organism’s behaviour, based on issued quantitative source-code trust certificates (.NET APIs, in LTE/5G, real-time). However, there are no ‘real’ solutions in non-binary calculations. Using deepfakes in digital twins to model game outcomes thus resulted in occidental natural latency ‘blips’. Trusted, quantitative, A.I., source-code program manifests, only support purely open-source hypotheses testing.
FLOW DIAGRAM OF RESEARCH UNDERTAKEN DURING CANDIDACY

Introduction

• Concerns the ethics and philosophy of data used to create "deepfakes", and asks the question (hypothesis), whether qualitative bias in simulated environmental datasets (for applied A.I.) are an inherent result of experimental design, and thus used unethically i.e. through geopolitical 'games'.
• Introduces the concept of measuring Δt for a simulated Mediterranean climate, via the construction of a digital twin to measure quantitative outcomes during a deepfake 'game'.

Review

• Establishes the statistical basis required for simulating Mediterranean environment interactions, and describes qualitative effects on a crustacean species using lab techniques with supporting literature.
• A brief summary describes the cultural challenges associated with environmental data collected in Mediterranean environments concerning hypothesised deepfake outcomes.

Methods

• Improves on the accuracy of Mediterranean environment simulations by coupling qualitative data-driven management descriptions with bacterial 16S sequencing data via CCA visualisation.
• Introduces a more advanced version of the instances hypothesised and described in the corresponding appendices and in manuscript 1, including a summary of how A.I., based autonomous systems may inadvertently benefit the dairy industry irrespective of other groups, landholders etc.

Hypothesis

• Focuses on data collection, error calculation, and correlation of quantitative trait data (glasshouse and field trials) used in genetics QTL studies (with supporting appendicies).
• Establishes a statistical basis for real-time, rapid phenotyping platforms and couples with the visualisation strategies of manuscripts 1 and 2 respectively.
• Introduces the notion that 'deepfakes' may allow a replicable and thus more realistic statistical comparison of data significance concerning culturally sensitive genetic data (minimise qualitative bias), when coupled with IoT or other satellite-derived technologies e.g., LTE.

Manuscript 1

• Establishes the statistical basis required for simulating Mediterranean environment interactions, and describes qualitative effects on a crustacean species using lab techniques with supporting literature.
• A brief summary describes the cultural challenges associated with environmental data collected in Mediterranean environments concerning hypothesised deepfake outcomes.

Manuscript 2

• Improves on the accuracy of Mediterranean environment simulations by coupling qualitative data-driven management descriptions with bacterial 16S sequencing data via CCA visualisation.
• Introduces a more advanced version of the instances hypothesised and described in the corresponding appendices and in manuscript 1, including a summary of how A.I., based autonomous systems may inadvertently benefit the dairy industry irrespective of other groups, landholders etc.

Manuscript 3

• Introduces a novel method for simulating and predicting Mediterranean soil properties using machine learning and applied A.I.
• The method developed is the final iteration of the statistical workflow concerning quantitative prediction based on statistical significance (independent of qualitative interpretation).
• Concludes with broader discussion about the current and potential uses of deepfake technology in real life situations and through the notion of a 'digital twin game'.

Manuscript 4

• The general results are the full implementation of the deepfake technology developed and show the real-time digital twin latency data outputs, as well as describe the deepfake game conducted. The general results introduce the broader issue of interpreting latency data from a qualitative perspective (real-time .net latency) due to the embedded nature of quantitative source-code trust algorithms. The general discussion then focusses on the hypothesis, and gives an overview of how deepfakes may be unethical from a A.I., perspective, by suggesting that the cultural nature of some Mediterranean simulations may be qualitatively biased by design or limited by physical design parameters (quantitisation issues within the silicon design itself).
• The thesis concludes with a list of recommendations, and touches on future application of the IP developed.

Results

Discussion

Conclusion

*Authors note: The germplasm (Tibetan-Australian barley) as it relates to intellectual property of this thesis is confidential. Contributions of individuals and known Australian institutions are listed throughout the thesis individually. However, the germplasm is also a part of an Australian-Chinese collaboration (DAW00187) that includes "8 project partners" including some in China. This collaboration stipulated that, "pre-approval is required for publication from all partners" (Prof C. Li personal communication 4th May 2016). As it relates to publishing my thesis; it is my belief that students have individual rights. Including the right to remain anonymous, and the right to free speech. In light of this development I have used personal supporting evidence to validate the central tenant and to test my hypothesis.
TABLE OF CONTENTS

THESIS ... 1

DATA-DRIVEN, MEDITERRANEAN, A.I. SIMULATIONS AND THE ETHICAL IMPLICATIONS OF EMBEDDED QUALITATIVE BIAS IN DIGITAL TWIN DEEPFAKE GAMES .. 3

THESIS DECLARATION STATEMENT ... 5

ACKNOWLEDGEMENTS .. 7

ABSTRACT ... 9

FLOW DIAGRAM OF RESEARCH UNDERTAKEN DURING CANDIDACY .. 15

TABLE OF CONTENTS .. 17

GENERAL INTRODUCTION .. 23

Deepfake Games: a revolving door of ethical debate concerning applied A.I., data science, and qualitative bias ... 25

REVIEW OF LITERATURE ... 29

The Case for Digital Twins in Environmental Science and Agriculture ... 31

Environmental Species Simulations: Data about Metadata .. 34

Environmental abiotic stress applies to all genes ... 35

A brief lesson about Quantitative water modelling (data) .. 36

Complicated abiotic QTL statistical studies ‘bear no fruit’ .. 40

Modelling Digital Twin Species: Ethical Considerations of A.I. Selection Bias .. 42

The case for an ethical assessment of a Tibetan doubled haploid barley digital twin .. 43

Applied Data Science is in Desperate Need of a Re-think Concerning Computer Visualisation Technologies 45

Mathematically Modelling the “Bio-Physical Source-Code” .. 47

Deepfake Games in A.I. Simulations .. 49

GENERAL AIMS ... 50

HYPOTHESIS ... 50

ASSUMPTIONS ... 51

METHODOLOGY ... 53

Methodology Disclaimer ... 55

A Small Contemporary Thought Experiment and Question .. 55

A New Purpose for Database (Lake) Construction: A.I. Simulations .. 55

Computational Visualisation and Programming Protocol .. 57

IoT platform stack, decision tree and penetration test ... 58

Digital twin latency assessment .. 59

Real-time deepfake A.I. game simulation .. 60

RESULTS CHAPTERS ... 63
The use of Deepfakes in cultural conservation and population control strategies

Abstract

Introduction, background and scientific context

The need to examine manufactures' claims

Materials and methods of instrumental analysis

Results and discussion

Instrumental analysis of silicate samples

Case example

Conclusion & recommendations

Acknowledgements

Compliance with ethical standards

Conflict of interest

THE USE OF DEEPFAKES IN CULTURAL CONSERVATION AND POPULATION CONTROL STRATEGIES

MANUSCRIPT 1: SCOPE, SIGNIFICANCE TO AIMS, AND DECLARATION

COMMERCIAL SILICATE PHOSPHATE SEQUESTRATION AND DESORPTION LEADS TO A GRADUAL DECLINE OF AQUATIC SYSTEMS

Abstract

Introduction, background and scientific context

The need to examine manufactures' claims

Materials and methods of instrumental analysis

Results and discussion

Instrumental analysis of silicate samples

Case example

Conclusion & recommendations

Acknowledgements

Compliance with ethical standards

Conflict of interest

MANUSCRIPT 2: BACKGROUND, SCOPE, AND DECLARATION

Dairy soil bacterial responses to nitrogen application in simulated Italian ryegrass and white clover pasture

Abstract

Introduction

Materials and methods

Results

Effects of N treatments on pasture plant species (white clover and Italian ryegrass)

Effects of N application and pasture plant species on dominant soil bacterial phyla and physiologically significant subgroups (order and family)

Discussion

Conclusions

Acknowledgements

NEW RESEARCH AND RELEVANCY CLARIFICATION TO MAIN AIMS AND HYPOTHESIS

MANUSCRIPT 3: BACKGROUND, SCOPE, AND DECLARATIONS

PRIVACY AND CONFIDENTIALITY STATEMENT

BIG-DATA GPU/CPU KERNALISATION PIPELINE FOR API BASED QUANTITATIVE GENETIC ASSESSMENTS IN FIELD-BASED DRONE RESEARCH

Abstract

The need for environmental and agricultural technology for abiotic heat, water scarcity, and frost improvement in barley cultivation

Complicated genetics: a familiar story in systems biology

Transcription factors alone do not explain environmental data variation patterns concerning yield in population studies

Genetic principles underpinning drought improvement strategies are technologically challenged
Biotechnological breakthroughs are hampered by phenotype bottlenecks ..112
Adaptation strategy and environmental considerations in Barley genome sequencing interactomics113
Physiological Leaf function during complex abiotic stress ..113
Doubled haploid chromosomal genetic improvements in barley breeding for abiotic stress tolerance ...115
Environmental scenario simulation phenotype, genotype interactions ..116
Environmental and biological QTL heuristics ...117

Summary ..118

Project 1: rapid downstream glasshouse field trial genetics assessments for QTL variability minimisation
in GPU core processing and telematics data analyses ..119

Executive summary ...119
Background ..120
Aims ...121
Methods and results ...121
 Candidate gene data mining and selection (metanalysis) ...121
 Combined heat and drought stress data required for yield correlations (based on environmental geo-
 location variation) ...123
Glasshouse and field trial database (data lake) design ...124
Technology derived glasshouse and field data-variation detection and measurement128
Sample database statistical outputs concerning project aims ..129
Field trials (2015, 2016, 2017) ...132
Evaluation of technologies used to collect plant specific traits concerning abiotic stress treatments as it
related to grain yield ...135
Discussion ..136

Project 2: a scaleable, private LTE/4G, Boolean GPU networking stack for automated, remote, IoT
decision making...139

Executive summary ...139
Aims ...139
Methods and results ...140
 Network workflow topology and methodology ..140
Discussion ..143
 IoT Smart device technology for cloud-automation ...143
 Concerning the security of IoT and remote 5G AI heuristics ..145

MANUSCRIPT 3: RECOMMENDATION AND CONCLUSION ..146
MANUSCRIPT 4: BACKGROUND SCOPE AND DECLARATIONS ..147

Heuristics enhanced SAAS platform: remote geospatial machine learning of soil profiles from an ancient
mediterranean environment ..149

Abstract ..149
Introduction ..149
Aims ..152
Materials and methods ...153
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validation of the laboratory based geotechnical data</td>
<td>153</td>
</tr>
<tr>
<td>Remote geospatial ground movement prediction based on statistical relations</td>
<td>154</td>
</tr>
<tr>
<td>Results and discussion</td>
<td>155</td>
</tr>
<tr>
<td>Author contributions and acknowledgements</td>
<td>159</td>
</tr>
<tr>
<td>Epilogue prologue concerning automated software prediction technologies in applied data ethics</td>
<td>160</td>
</tr>
<tr>
<td>General results</td>
<td>161</td>
</tr>
<tr>
<td>Murdoch twins: containerised .net api backend data implementation for real-time deepfake games</td>
<td>163</td>
</tr>
<tr>
<td>General discussion</td>
<td>169</td>
</tr>
<tr>
<td>Concerning the hypothesis of data-driven, Mediterranean, A.I. simulations and the ethical implications of embedded qualitative bias in digital twin deepfake games</td>
<td>171</td>
</tr>
<tr>
<td>About the novelty and authenticity of this research thesis and its manuscripts</td>
<td>173</td>
</tr>
<tr>
<td>Correcting the flaws of modern applied data science</td>
<td>176</td>
</tr>
<tr>
<td>On the perceived flaws in the ethical tenet of simulation methodologies (and the metadata argument)</td>
<td>177</td>
</tr>
<tr>
<td>The specifics of hardware implementations concerning heuristics workflows show promise. But there's a catch!</td>
<td>179</td>
</tr>
<tr>
<td>The effect of immeasurable factors on statistical heuristics as it relates to downstream qualitative interpretation / deepfake verification</td>
<td>181</td>
</tr>
<tr>
<td>Using complimentary datasets to build visual heuristics-based decision making A.I.</td>
<td>183</td>
</tr>
<tr>
<td>Various responses to environmental stresses not fully exploitable in this study due to natural limit of measurement time</td>
<td>184</td>
</tr>
<tr>
<td>Immeasurable field data and omics based functional model extrapolation attributed to understanding variability</td>
<td>185</td>
</tr>
<tr>
<td>Agtech and telecommunications requirements for successful environmental agriculture data science A.I. routines</td>
<td>186</td>
</tr>
<tr>
<td>Economic benefits can outweigh data-driven guessing games</td>
<td>187</td>
</tr>
<tr>
<td>The steady rise of well meaning, ill informed, data scientists in the A.I. ethics community</td>
<td>189</td>
</tr>
<tr>
<td>Findings and recommendations</td>
<td>193</td>
</tr>
<tr>
<td>Thesis findings</td>
<td>195</td>
</tr>
<tr>
<td>Thesis recommendations</td>
<td>195</td>
</tr>
<tr>
<td>Future trends</td>
<td>197</td>
</tr>
<tr>
<td>The next 30 years as it relates to thesis tenet, A.I. and biophysics</td>
<td>199</td>
</tr>
<tr>
<td>Thesis Appendices</td>
<td>203</td>
</tr>
<tr>
<td>Appendix 1: Remote 5G automated phenomics platform for low melting temperature fat, native grass grazed export cattle Wagyu EWAS</td>
<td>207</td>
</tr>
<tr>
<td>Appendix 2: The role adaptive trait plasticity plays in pre-harvest sprouting in barley</td>
<td>209</td>
</tr>
</tbody>
</table>
GENERAL INTRODUCTION
DEEPFAKE GAMES: A REVOLVING DOOR OF ETHICAL DEBATE CONCERNING APPLIED A.I., DATA SCIENCE, AND QUALITATIVE BIAS.

Why use a sledgehammer to crack a peanut? Moving progressively away from smaller-scale, more labour intensive economies, to larger, more efficient, automated economies that utilise newer technology seems like a costly exercise. Part of the solution to the cost is a technology-driven revolution that includes digital twins and artificial intelligence (A.I.). Like those that monitor the health and location data of everyone in real-time via edge processing and adaptive hopping (e.g. Low Energy Bluetooth®), giving governments and scientists predictions on people’s behaviour in the event of sudden environmental changes (ARM, 2019). However, is the root cause of probability ever guaranteed in a computer statistical simulation or computer visualisation, or is it due to non-random, relativistic proportionality (Freedman, 1995; Greenhalgh, 2002)? Is this exercise ethically responsible or even practicable concerning the broader data usage implications or misuse potential e.g., (Nature, 2020; The Lancet Group, 2020)? What are the broader implications concerning deepfakes and their intended use in ethical species’ manipulation? But most importantly, ethically, whose data is it? At a recent event held at the University of Tokyo’s Hongo Campus; ‘Framing Benefits and Risks of Biotech and A.I.: Symposium’ in February 2020, Professor Jeroen van den Hoven from the Delft University of Technology outlined the, ‘risks and rewards of ethical A.I. and infrastructure’. He proposed that currently, “there are only two major global players in R&D investment considering implementing A.I. systems.” At that time, he didn’t advise that any of two A.I. systems (presumably The People’s Republic of China (PRC) and The United States of America (USA)) have any competitive advantage over the other. Nor did he give any indication that these models are linked to the European Union (E.U.) (for implementation) due to what could only be described as a non-committal concerning perceived benefits that either of the two models may offer the E.U. in terms of its own A.I. policy frameworks, legislation, and strategies (Prof. J. van den Hover personal communication, 1st February 2020). The broader implications of this statement cannot be understated concerning the potential roll-out of A.I., globally as it relates to all possible data sources (and all personal data), under a choice of only one of two systems e.g., (The Lancet Group, 2020).

Where economically feasible to do so, the roll-out of smart technologies and automation solutions has already begun, and become a significant focus for mathematicians and computer scientists, analysing increasingly complex datasets including for agricultural drought, and point
and non-point pollution sources as changes delta (Δ). But, with this rollout come modern challenges related to computational time constraints (t) (Turing award recipient Prof. Y. Bengio personal communication, 3rd September 2018). Connecting and integrating our world means sharing more and more with each other. However, not always (Pivotel C.E.O. Mr. P. Bolger personal communication, 20th November 2018). Some scientists are now at the new nexus working in food security, predicting, mapping and estimating environmental fate (e.g. pollution, or climate change), by using ‘omics’ and genomics data for predictive gene function mapping of transcription factors (Thompson et al., 2020). For discovering new proteins, engineering plant-based meats through improved production methods, or for identifying new (or lost) plant varieties (UC Davis Prof. D. Cook personal communication, 3rd January 2020).

The problem is that increasingly complex understandings of genetic and environmental systems, are being summarised in qualitative means by A.I. data-ethicists, without appreciating the complexity but more importantly, the bio-physical ‘source-code’ (RNA/DNA evolution). This problem is actually famous. Neils Bohr wrote about it in his 1933 Light and Life abstract, “concerning the relation of physics to the problems of biology,” arguing successfully that nature is randomly entangled quanta (Bohr, 1933). In any case, our new interconnected world of complex networks and computers, smartphones, base stations, and servers; this nano-nexus comprises a digital ocean of connected data lakes, embedded game strategies, A.I., and maybe soon will include encrypted quantum computers.

The digital ocean is power-hungry, requires massive infrastructure investment, and teams of people to manage and maintain it, independent of the A.I. and data lakes themselves (Hagendorff, 2020). In reality, exacting the values required from statistical models is challenging, often counterintuitive and almost always time-consuming or expensive (e.g. Arute et al., 2019). There is a gap in understanding integrated telematics, informatics, logistics and analytical visualisation tools required for effective data management systems, that connect sensors to their entangled network and environment, which can lead to people ultimately taking shortcuts. For which measurements and calculations are qualitatively interpreted and quantitatively reported via an internet-connected computer application interface (e.g. via pythonic .NET APIs). More and more sensors are being manufactured every day. Yet, security considerations of communications protocols and data collection standards are not addressed generally or not at all in many institutions and organisations who cite politics over science as an ethical mandate e.g., (Nature, 2020). Actors are increasingly aware of this; they seek to take
any advantage governable. Enter deepfakes; a necessity, because currently there is no ethical framework or mandate that says their use is categorically “unethical” (Stahl and Wright, 2018; Ide et al., 2020; Pauwels and Deton, 2020).

The modern renaissance of ‘big.’ Advances in bio-physical algorithm functions and architectures, the quantum A.I. cloud is here. A new bio-physical Moore’s Law. The ethical responsibility lies in humanities hands to ensure that the genetic data of all species’ is not lost to history, in time. Out of the myriad of challenges and potential solutions, the case for digital twins in agriculture, environmental science, and industrial automation technologies (presented in this thesis) is the result of 20 years of collecting environmental data, and from first-hand experience learning how reporting significance of statistical analyses can skew outcomes. A question always remains unanswered. Qualitative bias (Grimley et al., 2019). A problem related to the ethics of species data collection, and digitalisation due to the lack of acknowledgement of the data and model source(s) embedded in objective probability (Freedman, 1995) e.g., (Abbott et al., 2012; Long et al., 2018) sometimes leading to bias in reporting significance (increasingly common for A.I. simulation). A.I. thus escapes ethical scrutiny. Why? Yet, without it (the raw data itself), digital twins wouldn’t be possible, so why should we consider implementing digital twins in the first place, a peanut cannot speak for itself. More importantly, who should get to decide the outcomes for the peanut in an A.I. game? (Figure 1)
Figure 1: In remote locations, technological services are vital due to increasing scales of marginal investment returns in the data-driven sciences; including those associated with grain-yield. The sheer vastness of remote cropping environments demands it. So too, selection and breeding approaches that offer new varieties for ever-increasing areas with different management strategies—requiring sophisticated logistics for grain yield and grain quality due to the magnitude of data that can be generated in a short time window. Thus, it is imperative to consider all previous data collection methods and sources before building software applications. Just as there are as many ways to explain why one (measurement) is most often left out or missed in a historical model; similarly packaged and marketed methods for demonstrating a perceived relationship that software longevity has with hardware ownership rights skew understandings (of data). In remote locations, longevity and inheritance are inter-generational considerations. In the software industry, the average longevity of secure applications that include customer support is three years (irrespective of the hardware functionality). This modern access issue includes access to machinery data and through the process of ethical hacking (legal 3rd party software modifications) has led to debates, fights, and lawsuits concerning said software ownership; and the right to modify, for the benefit of seemingly no-one but users themselves (contrary to widespread debate). A photograph of the author (circa 2016) while collecting data and consulting in a remote region with limited telecommunications infrastructure in Western Australia’s Wheatbelt. Photo Credit: Dr. R. Maddern.
REVIEW OF LITERATURE
THE CASE FOR DIGITAL TWINS IN ENVIRONMENTAL SCIENCE AND AGRICULTURE

Modern economies are turning to the connected ‘digital ocean’ (Muñoz-Amatriain et al., 2015) to tackle not only environmental stresses (Copetti et al., 2016; Werrell and Femina, 2016) in engineered and agrarian land-use systems but there has been a rapid rise in clinical genomics, diagnostics and gene function transfer prediction research dating back to the early ‘80s that continues today (Jones, 1985; Tyson et al., 2004; Watts et al., 2017; Vallecillo-Viejo et al., 2020). While the latter has seen recent economic returns in this space, environmental scientists, agriculturalists, agronomists, plant breeders, and farmers have had a more challenging experience (Knight, 2006). Not only because of a perceived lack of data as a function of available processing speed capability but also in some instances due to remoteness, ever-diminishing returns on investment, and the cost required to upgrade to newer monitoring systems. Coupled with challenging policy frameworks and laws surrounding the ownership of data and globalisation of software systems, this is the current landscape (Teng et al., 2016; Stahl and Wright, 2018; Hagendorff, 2020). It is in this uncertainty that people, businesses, professionals, and land managers sometimes willingly hand over data, to data-scientists, often self-prescribed experts in machine learning and A.I., but with no ethical responsibility (grounded in traditional sciences) concerning the outcomes an algorithm generates e.g., (The Lancet Group, 2020). The reliability of the data source more often than not interpreted without a foundational understanding of the environment from which it was sourced leading to a new term, ‘plausible deniability’ for explaining such failures. Google’s ABC corporate mantra is “fail fast, fail often.” But, what are the implications of this, on the traditional physical sciences; chemistry, and physics, as it relates to modern, applied, hypothesis-based, data-science?

Specifically, it is because farmers and land managers who face the challenges of having to be able to adapt under changing climatic constraints while at the same time facing agricultural production and conservation issues that are not necessarily environmental, or related to point sources that data science has become such a focal point in governmental policy (McKee et al., 1993; Svatos and Abbott, 2019). These types of interactions, the results of which are reported are not new, however. More often nowadays, being called ‘micro-climate effects’, this phenomenon originates from some of the original works of a German scientist named Rudolph Geiger, circa 1923. “Orographisches mikroklima” (orographical microclimate) and “Kleinklima” (small climate) (Geiger, 1927; Yoshino, 2005) that refers to ‘targeted occurrences’, ‘hotspots’, or other significant deviations in standard dataset models or data
sources. Although in data science concerning environmental data there are increasing references to microclimate pertaining to; a lack of supporting environmental data, missing data, collection errors, and or other malfunctions that may contribute to bias in statistical analyses of significance, e.g. (Zhou, 2016b; He et al., 2019). Combinations of environmental stresses are a constant reminder of the harsh realities of human-environment interaction, but these combinations are not limited to ecological pressures alone (Nokia Moon Shot Intuitive Machines VP Space Services, T Martin personal communication 28th October 2020). Combined biotic and abiotic stresses cause morphological, physiological, biochemical, molecular and genetic changes that adversely affect desired ecosystem function (Wahid et al., 2007; Mejia-Guerra et al., 2012; Bita and Gerats, 2013). In ecosystems, abiotic and biotic stresses include: (i) drought and flooding, (ii) temperature stress (freezing and heat), (iii) soil effects (salinity and acidification), (iv) light intensity, (v) introduced or native animals or insects, (vi) diseases, (vii) viruses, (viii) micronutrients and heavy metals, (ix) herbicides, (x) CO$_2$ and other ozone gasses, and (xi) climate change (Jisha et al., 2012; Lavania et al., 2014; Halford et al., 2015; Jain, 2015; Sheoran et al., 2015). It has been suggested by Duque et al., (2013), that more knowledge about biological protection systems in hostile environments will hold the key to discovering new tools for enhancing adaptation to biotic and abiotic stress. The challenge is linking the data to what happens in the environment, and the implementation of such strategies to some sort of perceived benefit (Svatos, 2018). And the issue of data ownership as it relates to the collection of all this knowledge.

Technologies conceived and available are able to ensure that animals, plants, and soil (microbes) receives what they need for optimum health and productivity. Furthermore, farmers and land managers need to be able to make decisions about their daily work based on measured values and utilise the technologies that can manage and control individual responses without losing time on the maintenance and upkeep of these systems (Merlot et al., 2002; Müller et al., 2018). But there is also a need to be able to make decisions about daily workloads based on the measured values that utilise these technologies’ data also (monitoring the monitors) (Weckwerth et al., 2020). So that people can manage and control individual responses without losing time on the maintenance and upkeep of their systems if they break down. Similarly, in high-intensity livestock farming (e.g. dairy), sensor systems to measure behaviour and health conditions of individual animals, allows farmers to make better-informed decisions on treatments, thus improving animal welfare and production (Svatos and Abbott, 2019). But if autonomous systems breakdown in remote locations, these systems need auto-guidance
solutions so that, together, farmers have the potential to make farming more productive and profitable without unnecessary risk (Svatos and Trowbridge, 2018).

Some of the technologies currently utilised include satellite navigation (GPS), monitoring technology from satellites, aircraft, and drones, that link to in-field sensors for data management and analytics, decision support tools and finally ‘robotisation’ for automation of all kinds of machinery (Figure 2). This type of telemetry can provide or improve wireless in-field communication, functional safety and repair. For maintenance, additional information to realise unified interfaces, create a standard IoT reference framework and to encourage openness and transparency in the development of technology-neutral, IoT system architectures and their implementation (Royal Australian Air Force pilot Mr. G Trowbridge (Retired) personal communication, 3rd April 2020).

In this context, the use of analytical heuristic algorithmic estimations (Huang et al., 2019) and genomic simulation should not be discounted (Thompson et al., 2020). However, the process of implementing heuristic algorithms over cloud IoT infrastructure and telecommunications (telematics) systems is still in development and very much a frontier science (Appendix 1 and 5). Although genomics simulations (e.g. AMES, 2003) are not new, their implementation outside the experimental fields, e.g. astrobiology, and into everyday life, however, is a late development. The reason is due to more recent uptake and investment in supercomputers, and even more recently, rapid investment into privately funded startups like SpaceX. SpaceX’s philosophy is not asking science fiction based questions, but
taking responsibility for shaping what society will be remembered for tomorrow, and in the future, into their own hands (Elon Musk on Twitter, 11th May 2020) https://twitter.com/elonmusk/status/1259945593805221891. The Amazon AWS GovCloud (U.S. Region), for instance; is capable of digital twin heuristics of big-data. Their cloud-based ‘digital ocean’ is composed of multiple data island centres that can handle the scale of high capacity, mission-critical workloads, including high-performance computing, big-data workloads. More than 200 dedicated hosts running more than 1,000 virtual machines (each of which requires at least eight vCPUs and 32GB RAM) are needed for it. Yet, there is very little by way of data visualisation tools and support that can be implemented without significant structural programming. Provided that a scientist can navigate the 100’s of billions of lines of programming code required to set up such instances and understand the complexities to ensure smooth operation for linking a digital twin to a financial market based on other sources (e.g. GPS integration with, COBOL ‘spaghetti’ code for example). Source: Bloomberg, 2020. This is an excellent ethical case for creating digital twins; however, the environmental data, the model species’ and the bias of A.I., for a twin model simulation needs reviewing. First and foremost, in terms of the ethics of species selection, based on some known A.I. ethical trust manifest at the silicon manufacturing end, e.g. ARM, (2019) who state, “at present there is no defining set of ethics to follow”..., “there are many issues that must be addressed in the development of an ethical framework for AI that enhances trust.” It is not reassuring that ARM selling licenses for their architecture for A.I., silicon implementation to companies every year including Microsoft and Apple can claim to be ethically responsible concerning data.

ENVIRONMENTAL SPECIES SIMULATIONS: DATA ABOUT METADATA

The reason why A.I. and environmental studies are seemingly at odds stems from the perception that simulating environmental stress is challenging when raw data are used to predict an outcome due to the simulated stress. A modern-day dilemma due to the increasing amounts of available data and metadata used to explain it, e.g. (Ludovisi et al., 2017; Reynolds et al., 2018). Three significant stress combinations that threaten global food security includes drought, heat, and frost (Pandey et al., 2015; Zandalinas et al., 2018). Whereas environmental scientists, tend to focus specifically on point and non-point modelling, for example, eutrophication related water issues (Elliott and De Jonge, 2002; Liu et al., 2016; Lin et al., 2017). In the case of plants and animals, abiotic stress is directly related to semi-controllable factors that affect the management of the particular resource being exploited. These abiotic
stresses (non-point and point) affect the holobiont and alter environmental fate regardless of the data and its associated meta-data (the ecosystem processes as a whole) (Hemond and Fenchner-Levy, 1999; Zilber-Rosenberg and Rosenberg, 2008; Chalancon et al., 2012). Animal, plant, fungal, bacterial, and viral interactions in the environment alter and affect the welfare of animals in agricultural production industries regardless (The Royal Society, 2009). Many of the primary and secondary responses of plants and animals to abiotic stress are known yet there is little evidence for success in drastically improving yield under all environments by identifying and cloning genes exhibiting tolerance or avoidance to combinations of abiotic stress. In relation to plants and animals this field of study faces challenges concerning collection of environmental data specific to ‘digitalisation’ because ethically, the question about trust remains unanswered. What is trust in this context? In defence of plants, exotic germplasm may be a source of genetic adaptation to be exploited for farming while potentially maintaining some of the yields required for economically sustainable cropping systems. However, the current state of the art of genomics technologies is more advanced than the most accurate field-based technologies, the data integration concerning the enormity of environmental variation, contentious, e.g. (Long et al., 2018; The Lancet Group, 2020).

ENVIRONMENTAL ABIOTIC STRESS APPLIES TO ALL GENES

Abiotic stress, including water scarcity, causes significant crop losses worldwide (Abou-Elwafa, 2016). It has been suggested by leading climate scientists (Andrys et al., 2016; Schellnhuber et al., 2016) that we are currently experiencing an accumulation of extreme weather conditions in connection with climate change. Global climate change due to anthropogenic increases in CO₂ correlates with changing weather patterns. Deforestation and clearing to make way for crop and pasture production, combined with on and off-farm emissions associated with those practices, probably contributes to more significant water losses overall than the actual climate change itself (Smith et al., 2016). However, developing countries in sub-Saharan Africa and Asia will be significantly affected. Calculations by the Intergovernmental Panel on Climate Change (IPCC) suggests that harvest yield as a result of water loss in these areas could be halved, which carries with it a potential increased risk of armed conflict and strategic logistical water resource fortification (Ide et al., 2020). Recent research suggests that abiotic stressors are closely related to two environmentally sensitive ‘molecular elements,’ including transposable elements and epigenetic components (Rey et al., 2016). The regulation and control of changes due to abiotic stress at the epigenome level are
suggested to be initiated and influenced at the global scale, i.e. a difference in global CO₂ concentrations that may result in a small-scale variation within a species. For example, stomata are the primary sites for transpiration in cereal plant crops including barley and are governed by CO₂, light, and temperature responses and circadian rhythm interactions (Habte et al., 2014; Fanourakis et al., 2015; Millar, 2016). Plants like barley, may evolve fewer stomata and thus upregulate their epigenetic responses accordingly (Engineer et al., 2016). These interactions have future implications for phenotypic and genotypic control, especially in breeding for abiotic stress where water can be secured into the future (Chinnusamy et al., 2008; Bobadilla and Berr, 2016). Studies in environmental epigenetics are becoming popular due to advances in bioinformatics data processing, including omics technologies.

These methods can assess ‘microevolution’ due to microclimate ‘hot spots’ (i.e. mutation and evolution at contemporary ecological scales) (White et al., 2012; Araus and Cairns, 2014; Rahaman et al., 2015; Tripathi et al., 2015; Kulski, 2016). The recent development and use of the CRISPR Cas9 (a naturally occurring bacterial resistance to a viral RNA mechanism that splices reverse transcript RNA sequences and copies the base pair sequence) represents a significant step forward since some of the first efforts to modify genomic DNA via “gene transfer” were detailed (Jones, 1985). With more substantial control to establish favourable outcomes in plant breeding without knocking out other genes, scientists are making further inroads (Chen et al., 2015; Jain, 2015; Rey et al., 2016). However, the case for using CRISPR Cas9 for abiotic and in particular complex abiotic stress drought x heat or drought x frost or ‘complex stress’ research is problematic and requires a new approach concerning data. A new iteration of a bio-physical source-code argument (Appendix 1, 2, and 3).

A BRIEF LESSON ABOUT QUANTITATIVE WATER MODELLING (DATA)

Water quality and quantity interactions are fundamental in our understanding of ecosystem functions. Water is the ‘glue’ that binds life processes in the homogenous matrix that encompasses not only cellular functions, but also at all ecosystem scales (global, local, nano) (Johnson, 2009; Sutherland et al., 2014; Copetti et al., 2016). Small changes that occur in all cells can affect and be affected by climate, and out of this equilibrium, we can improve our understanding of environmental management (Svatos, 2018). Without doubt, two of the most critical water-related challenges facing environmental scientists and agriculturalists are eutrophication due to farming practices (involving phosphate and nitrogen), and the scarcity of
potable water resources (due to changing climate scenarios and the associated political situations) (Burrows and Kinney, 2016). Drought is a significant threat regarding global food security and long-term agricultural production (Altman, 2013; Andrys et al., 2016). In many areas of Earth, clean arable water for crop production is in short supply (Carvalho et al., 2014). Water availability, whether rain-fed or irrigated is thus the most critical factor in agricultural production throughout the world. A predicted increase in demand for food production is essential and depends on whether agricultural areas can receive sufficient water (Irmak, 2012). Breeders have made progress in improving and developing more drought-tolerant crops. However, cultivators still cannot meet the demands of food security in the face of an increasing world population, global warming, and global water shortages in agriculturally productive areas (Mendicino and Senatore, 2012). Therefore drought is internationally significant because it can occur at any time during the growing period, and is not limited to specific seasons or years (Morison et al., 2008; Lakew et al., 2011).

Drought stress in cropping and agriculture accounts for a significant reduction in global productivity between 40% and 50% (Hill et al., 2013). This impact of drought represents a considerable challenge regarding the implications that will affect population growth now and in future generations (Ahuja et al., 2010; Teixeira et al., 2013; Zhang and Li, 2016). Climate projections for Mediterranean climates show average rainfalls are predicted to decline by 6% by the year 2030, and 12% by the end of the century. For a high emissions scenario, this rainfall decline will more likely be ≈18%, according to Sudmeyer et al., (2016). Scientists associated with the Australian Bureau of Meteorology (BOM) have defined drought in cropping systems as an acute water stress from anthesis. In barley cropping systems in Western Australia, terminal drought is the typical type of drought experienced by farmers and is considered to have occurred after five consecutive days without rainfall after anthesis (Allison and Hobbs, 2004; Allison and Hobbs, 2010; Sudmeyer et al., 2016). “When reviewing measurement of stress from an environmental and agricultural viewpoint drought is a model choice, due to it being very challenging to predict and define” (Palmer, 1965). “Hence, the real cause and prediction of drought using indices remain both premature and inadequate.” Drought stress in plants is multidimensional environmental stress (Palmer, 1965; Pozzi et al., 2013; Sadras and Drecceer, 2015; Brunner et al., 2015). There are currently over 150 publications that have been used to characterise and measure drought in the environment as of 2011 (Zargar, 2011). Commonly used quantitative methods for measuring drought are: (i) Palmer Drought Severity Index (PDSI), (ii) Crop Moisture Index (CMI), (iii) Standard Precipitation Index (SPI), (iv)
Relative Soil Moisture (RSM), and (v) NDVI (multiple) reds, greens and near-infrared bands (Palmer, 1965; Keyantash and Dracup, 2002). Scientific literature recognises four types of drought: meteorological, hydrological, agricultural, and socioeconomic. Since drought stress is simply a plant response to an environmental condition, quantifying what this plant response using standard measures is often tricky (Tetard-Jones et al., 2011; Obsa et al., 2016). Zargar, (2011) suggests that to best manage a drought; accurate characterisation is essential in enabling both thorough analyses (e.g. severity versus impacts) and risk assessment (e.g. the likelihood of drought). Nonetheless, water use efficiency and plant tolerance to drought stress have been correlated (especially in barley) (Hu and Xiong, 2014). The drought indices SPI and NDVI do not account for all aspects of drought. In addition to the variability in the types and applications of droughts (e.g. meteorological versus hydrological), the weak association between drought indices with physical drought has prompted calls for aggregate drought indices to cover more aspects of the environment. Pozzi et al., (2013) also suggest that the advanced Palmer Drought Severity Index (PDSI) does not take into account factors associated with how extreme heat stress may affect the status of plant development under drought. Drought occurs on vastly different scales and can affect all aspects of plant metabolism, which also can happen at various times. Consider the following Penman-Monteith (PM) model of the Thornthwaite PE algorithm (Equation 1). This equation is considered the most comprehensive algorithm for modelling potential and actual evapotranspiration (given additional estimates of the plant and environmental resistance to atmospheric demand (Sheffield et al., 2012). The PM models evaporation as a combination of irradiative and aerodynamic processes, thus it gives a more realistic estimate, having the potential to be influenced by changes in humidity, radiation, and wind speed, as well as temperature (Trenberth et al., 2014).

Equation 1: Penman-Monteith (PM) model of the Thornthwaite PE algorithm

\[
PE = \left(\frac{\Delta}{\Delta + \gamma}\right) R_{\text{net}} + \gamma \left(\frac{\frac{\gamma}{\Delta + \gamma} \cdot 6.43(1 + 0.536U)D}{\Delta + \gamma}\right)
\]

Legend: PE is (mm d\(^{-1}\)) assuming zero stomatal resistance; \(\Delta\) (Pa.K\(^{-1}\)) is the slope of the plot of saturated vapour pressure against air temperature, \(U\) is the wind speed (ms\(^{-1}\)) at 2 m height, \(R_{\text{net}}\) is the net radiation (W.m\(^{-2}\)), \(D\) is the vapour pressure deficit (Pa), and \(\gamma\) is a psychometric constant (Pa.K\(^{-1}\)). Although as precise as is reported; whether the model can be used in microclimate calculations considering the scales at which such phenomena can change the individual components that make the sum of the model is unknown to the author.

There is a considerable reward for monitoring water scarcity and quality (Mendicino and Senatore, 2012), however, how can we model such large datasets with increasing certainty, and if we take any particular environment and model physics and weather station data, what should we expect concerning the outputs in terms of technology or computation strategy (Table 1)?
Table 1: Current classical environmental indices used by research groups, governmental agencies, universities and organisations to measure and assess a range of climates. Each model describes the type of measurements (non-parametric) required, including the complexities and data output collection types. This list best reflects the indices currently in the literature as of 2020, excluding newer remotely sensed machine learning and artificial intelligence-based models, that have recently gained attention; that also have similar complexities (in no particular order).

<table>
<thead>
<tr>
<th>Name of Index / Model</th>
<th>Description, Measurements, Algorithms and Hypotheticals</th>
<th>Data Output Description and Complexities</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drought Index (DTx)</td>
<td>Drought management at a regional level</td>
<td>A new index of agricultural drought</td>
<td>(Matera et al., 2007)</td>
</tr>
<tr>
<td></td>
<td>Based on the daily transpiration deficit</td>
<td>Pluviometric and hydrological indices describe drought effects in different fields</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calculated using a water balance model</td>
<td>Local climatology required in order to quantify statistical anomaly</td>
<td></td>
</tr>
<tr>
<td>Crop Moisture Index (CMI)</td>
<td>Measure of relative crop moisture at any given time</td>
<td>Index based on the probability of precipitation for any time scale</td>
<td>(Palmer, 1968)</td>
</tr>
<tr>
<td></td>
<td>Previous weekly mean temperature, soil moisture measurements</td>
<td>Only good for short term changes in soil (good for cropping systems)</td>
<td></td>
</tr>
<tr>
<td>Palmer Drought Sensivity Index (PDSI)</td>
<td>Meterological measurements Soil moisture algorithm Calibrated for relatively homogeneous regions Heat stress gradient adjustments required Two soil-layer model for water balance assessment</td>
<td>Hypothetical moisture supply flux, requires ongoing measurement</td>
<td>(Palmer, 1965)</td>
</tr>
<tr>
<td>Relative Soil Moisture (RSM)</td>
<td>Water balance from various methods Climate, soil, and crop variables</td>
<td>Hypothetical moisture supply flux, requires ongoing measurement</td>
<td>(Thornthwaite & Mather, 1955)</td>
</tr>
<tr>
<td>Visible red band, near infrared bands (NDVI)</td>
<td>Simple algorithms measure dryness Reduces noise from atmospheric conditions (sun surface geometry) High resolution (1 Km) No interpolation or extrapolation required</td>
<td>A new index of agricultural drought Pluviometric and hydrological indices describe drought effects in different fields Local climatology required in order to quantify statistical anomaly</td>
<td>(Zagar et al., 2011)</td>
</tr>
</tbody>
</table>
COMPLICATED ABIOTIC QTL STATISTICAL STUDIES ‘BEAR NO FRUIT’

Briefly, a QTL is a quantitative trait locus and is a selection of DNA that correlates with variation in a phenotype (Lander and Green, 1987). QTL are calculated to physical locations on chromosomes using the Kosambi function and are linked to the genes that control for the phenotype (for that particular trait) (Kosambi, 1943; Masle et al., 2005). For organisms whose genomes have already been sequenced such as Arabidopsis and Oryza sativa (rice), QTL can be used to include or exclude a gene(s) in identified regions when the function of such gene(s) is connected to a trait in question (Jones, 1985). If the genome sequence is not available, a QTL may be used to extrapolate via sequencing the identified region and determine putative functions of genes by their similarity to other sequenced genes with a known function(s) (usually in other genomes, e.g. MOREX). Researchers can perform searches using the basic local alignment search tool (BLAST); a cloud-based service that allows users to enter a primary sequence(s) and find similar sequences in the cloud (online database) for genes and genomes https://www.ncbi.nlm.nih.gov/guide/all/. Wehner et al., (2015) using a genome-wide association study (GWAS) to find genes coding for proteins identified by BlastX, found significant marker sequences in their study of drought stress and leaf senescence in juvenile barley. This study shows that GWAS studies are adequate at mapping and finding new genes and lead to protein discoveries; however, many GWAS studies make great promises that result in significant challenges and even greater failures, e.g. (Wang et al., 2017; Hepworth et al. 2018). Why? (for context, please see Appendix 2).

Agronomic yield under drought-stressed conditions is affected by both constitutive QTL and adaptive QTL while drought-responsive adaptive QTL affect only yield under specific drought conditions (Pospisilova et al., 2016). The problem is that the associated regions of DNA that closely link to a candidate gene is sometimes considered more important than the actual phenotypic trait data and its collection. Robinson et al., (2016) identified QTL for root traits for drought adaptation. They summarised several QTL mapping studies conducted in wheat, rice, sorghum, and barley. For root angle and number, they also published, “two major suggestive QTL on 5D and 6B for root angle, and two QTL on 4A and 6A with four suggestive QTL positions on 1B, 3A, 3B and 4A for root number.” However, from their studies, not enough significant data have been generated to further validate the data collection methods in field trial examples that link their QTL to more environments, concerning more soil types. A GWAS conducted by Clauw et al., (2016) found that the occurrence of a mild drought stress response
in leaves and inferred high accuracy across accessions based on the expression profile of 283
genes. Still, their study has not been validated beyond this, and their research only suggests
that “natural variation in Arabidopsis sheds light on trait architecture.”

Another QTL analysis for kernel colour was performed using genotypic data from 167 RIL’s
derived from a cross between a black kernel and drought-tolerant Syrian landrace (barley)
Tadmor, and a light-kernel and drought-susceptible parent (Akash, 2010). A significant QTL
was detected using composite interval mapping, “which explained 77.1% of the phenotypic
variation for kernel colour in barley.” The author also suggests that “the QTL will provide a
basis for gene cloning and marker-assisted selection about drought tolerance.” Given these
claims, one would expect a more substantial response in the way this and other studies are
reported in the scientific news; however, such occurrences are rare. Too many studies conclude
unconvincingly with a list of actions and recommendations, with, biases often claimed to be a
result of microclimate, or GxE, when the data do not clearly reflect the observations. For
example, “excessive ryegrass in field trials” (Dr. D. Diepeveen personal communication, 2nd
January 2020). The net resulting variation from the expected are commonly used to propose
new studies and then propose the same experiment again, with different results that don’t
support adapted or more modern methodologies proposed by others. Only to delve deeper into
bioinformatics analyses to explain the same phenotypic variation due to new microclimate or
GxE effects and introduce more candidate genes that ‘show promise,’ e.g. (Zhou et al., 2016b;
Guo et al., 2017; Hill et al., 2019).

The main aim of QTL mapping is to get useful phenotype data that is highly repeatable and
correlates well to the environment. Therefore, the number of phenotypes that one can collect
is not so much as important as the quality of the phenotype data (Costa et al., 2013). Logistics
and time management for collecting trait data and meaningful phenotypes must play a role in
experimental design. Thus, any data available within the context of drought tolerance and other
agronomic traits may be of importance and thus permits collection and segregation later
(Rahman et al., 2015). However, increasing accuracy of phenotypes is reliant on the efficiency
of methods of data collection, which requires increased use of technology to be repeatable for
all environments. Not just in some (Brauer et al., 2014; Camargo et al., 2014; Gago et al., 2015;
Gutleben et al., 2018). Thus, it is easy to see how setting up such experiments alone could
quickly run into the 100s of millions of dollars, e.g. pangenome strategies with accelerated
breeding program outputs, including next-generation metagenomics sequencing strategies
(Mascher et al., 2016; Cheifet, 2019). All these trends point to increasing data with increasing uncertainty with less revolutionary breakthroughs (Appendix 2). So the case for why a digital twin simulation can be realised (concerning the fruits at the top of a hypothetical, digital, evolutionary tree) can also as easily be acknowledged. But, should one be constructed?

MODELLING DIGITAL TWIN SPECIES': ETHICAL CONSIDERATIONS OF A.I. SELECTION BIAS

In any instance, before a digital twin can be constructed, a specific species must be chosen to ‘ethically digitalise’. Selecting a model species for a digital twin environmental simulation has its challenges. Not due to the complex nature our environment shapes phenotype and influences epigenetic expression ‘loops’ of genes resulting in a selection that alters interactions (e.g. RNA deletion neurons in squid) (Vallecillo-Viejo et al., 2020). Nor is choosing a model species about the process of natural selection itself (Appendix 2). To select a model species for digital twins from an ethical perspective, how or what should it be? Should it (i) be highly adaptable or show signs of such an ability, (ii) have a significant environmental data source which correctly reflects every adaptation and natural selection strategy for all potential environments, or (iii) not be constrained by the ethics of data collection itself? “The great fault of all ethics hitherto has been that they believed themselves to have to deal only with the relations of man to man. In reality, however, the question is what is his attitude to the world and all life that comes within his reach” (Albert Schweitzer). It is an interesting point. And what about cultural or spiritual considerations in humans, concerning our immediate environment that supports us, e.g. (Boesi, 2014; Laurent, 2015)?

Some research has already been considered and published. These publications; including that of the critically endangered hairy marron under increasing exposure to heavy metals in eutrophic waterways (Svatos, 2018), dairy cows under changing microbial bacterial dairy soil, nitrogen, hotspot scenarios (Svatos, 2011; Svatos 2012; Svatos and Abbott, 2019), a new Tibetan-Australian barley population (including two new clone species) under complex abiotic drought x heat, and frost scenarios (Svatos et al., 2018; Svatos and Trowbridge, 2018); and thus as it applies to humans in the building and construction industry (under review), represents data collection and management supporting independent evidence of the attitudes supported by an increasing number of A.I. ethicists.
THE CASE FOR AN ETHICAL ASSESSMENT OF A TIBETAN DOUBLED HAPLOID BARLEY DIGITAL TWIN

Barley (Hordeum vulgare L) is one of the world’s most ancient and vital crop species according to Mascher et al., (2016) and represents the fourth most abundant cereal crop in both harvested area and grain production globally (Zohary et al., 2012). The very earliest known domestication of barley can be traced back approximately 10 000 years to the fertile crescent. The occurrence of the grain in its wild form in caves explains early domestication around the Neolithic period (Archaeologist Mr. N. Svatos personal communication, 3rd March 2020). It has also been used to describe continental migration and habitation patterns of continental Europe by homosapiens approximately 6 000 years ago (Mascher et al., 2016). More widely, barley is grown and used to make beer and other beverages and in primary industries for consumption by animals, including livestock (Laurent, 2015; Zhang and Li, 2016). Both the domesticated and wild forms are believed to be from the self-pollinating cereals of the Poaceae/Gramineae family of monocotyledonous plants that have evolved from the flowering evolutionary lineage (Zohary et al., 2012). Both are diploid in nature with 14 chromosomes 2n = 14 (n = 7).
seven chromosomes identified and labelled based on their size and characteristics and defined as 1H through 7H (Jakob et al., 2014). The main difference between the two forms is only the occurrence of a brittle rachis in the wild type, which is believed to aid seed dispersal (Reetinder, 2009). Studies by Wang et al., (2009) and Yuan et al., (2015) offers a new theory of the origin of *Hordeum vulgare* L., using genetic diversity analysis. The authors suggest that close relatives of Tibetan wild barley may have a higher genetic diversity than those from the Middle East. This evidence, however, is not supported in the archaeological record and is thus inconclusive (Laurent, 2015). Nonetheless, barley exhibits, variation in response to abiotic stresses in primitive landraces and related wild species gene pools (Forster et al., 2004; Dwivedi, 2016b), and these Tibetan cultivars are some of the earliest forms domesticated in Asia. The primary uniqueness of the Tibetan varieties (both domesticated and wild forms) is the physical altitude they can survive independent of climatic events, making them a remarkable example of early, evolutionary colonisers, but more importantly survivors (Figure 3). Evidence suggests this is one of the main reasons for the continuing habitation of Tibet (Boesi, 2014). Barley crops in Tibet are mainly used in producing Tsampa which is culturally used as a food, a medicine, but also has a deep spiritual connection to the Tibetan tribes who have lived there for millennia.

Tibetan barley owing to its origins in high altitude, water-limited environments, may contain unique genes enabling crossed varieties to survive in increasingly drought susceptible cropping regions (Prof. C. Li personal communication 2nd Feb 2016). For example, in Mediterranean climates, and thus offer improved yield-related traits under increasingly bleak drought outlook scenarios (Andrys et al., 2016). The challenges, however, to exploit Tibetan barley germplasm and give impartial, and balanced, ethical assessments (concerning all available data) may be challenging. Not owing to open-source datasets, but owing to ongoing data, germplasm ownership, and technology bottleneck issues concerning geopolitics, (Furbank and Tester, 2011; d’Alpoim Guedes and Aldenderfer, 2019). Nonetheless, novel solutions relating to Tibetan barley; including the selection of a Tibetan-Australian barely population to create a digital twin for an ethical A.I. assessment is essential for science; because of the impartiality, such an evaluation may afford in minimising moral, objective, assessment bias through novel methods and technologies (Solaiman and Hirata, 1997; Caporaso et al., 2010; Driedonks et al., 2016; Dey, 2018; Fong, 2018; Svatos et al., 2018).
APPLIED DATA SCIENCE IS IN DESPERATE NEED OF A RE-THINK CONCERNING COMPUTER VISUALISATION TECHNOLOGIES

Currently, the most challenging aspect of big-data analysis and statistics is visualisation. This multifaceted discipline is now ineffectual at relaying the multitude of data sources in real-time for decision making (in the applied sciences and related industries) irrespective of the elegance of the computational algorithm at a programmers disposal (Freedman, 1995; Greenhalgh, 2002) (Appendix 3, 4, 5, and 6). The correct statistical method for a visualised heuristics test includes the implementation of classical computer programming processes; modification and testing the IDE, SDK, and then building the kernel (assembly) for firmware-based tools, and finally, ROM flashing, recovery etc. (Shotts Jr., 2009; Ghiurcuta and Moret, 2014). The tests required for developing and maintaining such an approach must increasingly be cloud-based but also link to existing computational systems running older firmware and OS for scalability, reliability and edge computing IoT, which frequently do not support a 64-bit remote terminal, secure shell, e.g. (Nandhini et al., 2016; Shuai et al., 2016; Reynolds et al., 2019).

To assess the ethics of an environmental digital twin simulation a highly specific, flexible kernel for the advancement of computational kinetic based systems needs essential development for the applied sciences to link it to the recently available 5G IoT infrastructure roll-out occurring concerning digital automation. Specifically, for A.I. research, that require a scaleable 6G network for various reasons raised in the following resources, i.e. (IBM 1989, Stine, 1990; Blackwood et al., 2003; Araus et al., 2018; Rancati et al., 2018; Ahmed et al., 2019). Key to this are industries related to the advancement of telecommunications. However

![Figure 4: (Left) The co-aligned Headwall sensor mounted on a DJI M600 Pro (DJI, Shenzhen, China) rigidly without gimbal. This Headwall dual sensor hyperspectral camera costs around $340k AUD (as of 2018) and is capable of capturing spectrum data between 400 and 2500 nm of bandwidth. The key characteristic is the two line-scan sensors in this system are pointed at the same target and logging is time synchronized. This dual VNIR/SWIR sensor gives the best of both worlds, covering the VNIR and SWIR bands enabling mineral identification (Image Credit: Headwall, Massachusetts, USA; courtesy of Mr. J. Portlock). (Right) The Scientific Aerospace, 4Scight P3 aircraft with equipped with a FLIR Tau thermal sensor onboard, can log a 9Hz analogue video onto an SD card. As of 2019 Scientific Aerospace was the only independent manufacturer of autonomous drones in Australia. Rory O’Connor (Chief Pilot). Image credit: The Author.](image-url)
the reality is that these technologies are generally not publically available for research, increasingly expensive; but more accurately are privately owned, and unfortunately sensitive to research questions linked to policies and international laws (Reynolds et al., 2019; ARM, 2019) (Figure 4) (Appendix 3 and 4). Correlations between data collected from a range of sources to a functionally online workflow are a frontier based scientific pursuit (Manfreda et al., 2018). And concerning machine learning and sophisticated embedded encryption, it is more important to open the manifest concerning trust to include all conventional data collection for finding collaboration; to expedite effective workflows. Because, issues associated with agriculture, locally and remotely sensed data are increasingly converging in political matters irrespective of policy feedback mechanisms (Qu et al., 2018; Ide et al., 2020). The data doesn’t support the policy decisions. Mandating that drought will be solved by implementing A.I., amounts to saying that a fighter pilot will beat an A.I. in a visual game simulation 100% of the time. It cannot be assured, because the computer can be turned off.

One of several proposed applications of statistical data visualisation is in genotype x environment (GxE) minimisation in genetic analyses (Brien et al., 2013; Pantin et al., 2013; Baker et al., 2015) for a range of glasshouse and field phenotyping platforms. Traditionally these begin with detailed experimental design and replication protocol facilitation, precision instrumental analytics, followed by statistical calculation and multiple ‘loops’ for data correction and correlation for example with mixed modelling CPU clusters (Neveu et al., 2019). From a plant genomics perspective, the cost associated with this approach is significant (Field et al., 2006). Many of the abiotic and biotic stress minimisation techniques do not result in single gene function determinations. Or the multiple molecular pathways that fine map to chromosomal regions are published and then retracted—for example, Cai et al., (2018). CRISPR Cas9 protein has resulted in the questioning of several QTL based analytical studies.

From the perspective of research, this raises some concerns about the validity of traditional phenotyping. But it also opens pathways to new experimental design ideas and methods to be developed to rapidly test functional gene architecture concerning traits in question (Appendix 2, 4, and 5). Data transfer mechanisms are at the forefront of industry decision making (Svatos and Trowbridge, 2018). In this respect, the use of high-resolution phenotyping requires significant investment in remote mobile telecommunications technologies and other supporting industries, as highlighted in Svatos et al., (2018) and similarly in Reynolds et al., (2019). Additionally, concerning telecommunications infrastructure, the focus on scaleability and
secure access to APIs requires additional secure data, VPN based encryption protocols, and physical asset protection Nandhini et al., (2016).

MATHEMATICALLY MODELLING THE “BIO-PHYSICAL SOURCE-CODE”

Bayesian estimation allows for considerable freedom in assessing data lake structure, stability and accessibility (Metropolis and Ulam, 1949; Greenhalgh, 2002; Thompson et al., 2020).

![Figure 5](image-url)

Figure 5: Microsoft IoT Edge and IoT Cloud workflow utilising docker containers to API interfaces and web-based database centres (containing a range of software library support packages for common architectures). The Docker interface creates a portable web-based API container for remote access to the node to integrate logistics and the IoT Hub and cloud (Mr. P. Schmidt personal communication, 5th June 2018). As such, the language support tools that are available through the Docker client are somewhat limited based on the architecture of the edge-based devices. A full comparison of all the available services offered by both Amazon and Microsoft is possible at https://docs.microsoft.com/en-us/azure/architecture/aws-professional/services. Image Credit: Microsoft Corporation.

However, the limitation of primary binary machine language, especially for an OS running 32-bit architectures on the newer 64-bit virtual containers lends itself to a large number of issues, e.g. (Diepeveen, 2011; Kássens, 2017). Although such an approach can be a success, it also depends on many factors, and there is a considerable programming legacy, concerning dependency acknowledgement, e.g. (Stine, 1990; Johansen et al., 2016). For the application-specific to science-based agriculture and environmental science, for example (Figure 5 and 6); provide side by side comparison, about the detailed workflows currently available.
Each system utilises similar technologies and current trends with integrated machine learning pipelines for island-based serverless decision tree IoT deployments. Concerning latency (Δ) of APIs and configurable IP addresses through TCP/IP command systray (e.g. backwards compatible kernel and custom flashed ROMS or recovery); containerisation and IP availability of instances. The compatibility of connected edge devices does not allow real-time (t) assessments in terms of non-data specific GPU strings (relative binary throughput in kB/sec) as previously suggested by Shuai and Medhi, (2016). It is expected by using an ‘AutoML’ configuration, that the setting of the limitation of latency-lag should be overcome especially for newer 5G implementations but probably not for 6G instances that will rely on TB/sec throughput (Figure 7). The question of security of these systems concerning multinational or governmental hacking. A significant cause for concern in current real-world scenarios concerning satellite source-code security, for example, as it relates to GPS navigation systems; critical (Mr. G Trowbridge (Retired) personal communication, 3rd April 2020). “We never even considered it.”

Figure 6: Amazon AWS serverless processing utilising a range of off the shelf products for integration into the IoT logistics decision tree, and machine learning (green grass) workflow(s). The AWS Green Grass and Kinesis operation allow scalable, real-time machine learning of AWS and other buckets, via an automated, expandable decision tree (AWS Lambda function). For example, the GPU cluster image ‘hot spot’ recognition, with environmental sensor data feedback. However, with such an approach, the quality of the computation is restricted by the ability of the clusters to keep up with the load generated via IoT sensor and visual data processed at the core. Kubernetes clusters serve this purpose; to balance the load generated through top-heavy GPU: CPU Bayesian and other Markov statistical computation (via Kinesis Analytics) (Mr. B. Pogson personal communication, 2nd January 2018). Edge processing is slowly becoming the more favoured tool for such an approach, however. Image Credit: amazon web services.
DEEPFAKE GAMES IN A.I. SIMULATIONS

The reason deepfake games may be employed in the context of scientific research concerning the ethical use of species related A.I. implementation is questionable ‘social engineering’ (Pauwels and Deton, 2020). But institutions and governments are increasingly under public pressure to produce revolutionary outcomes (in particular in genetics). The reason why a deepfake image or video may be used to manipulate an outcome for reward becomes instantly apparent, but also a necessity. The compounding problem relates to the increasingly automated platforms being employed across international borders in collaborations with little or no security design features in mind, e.g. (Reynolds et al., 2019). Source-code exposed by IoT devices (that have critical functions in the collection of data used to generate predictions) that then give decision-makers the required information to qualitatively decide outcomes for large populations (including for humans) is concerning. Digital twin deepfakes is the next iteration of this outcome. Where fake images and video are subsequently used to model the responses using sensors (e.g. in smartphones) to see whether the responses to the fake information is positive or negative without qualitative interpretation in the feedback loop (assumed/automated responses). A divide and conquer A.I., game strategy, with no real number solutions, (not Turing-complete), but a trusted source-code hack, e.g. (Huang et al., 2020), ethical or not, it is a matter of perspective. The problem of biology as it relates to physics as hypothesized by Bohr in 1933.

Figure 7: The Google analytics and cloud hosting service links the firebase remote shell terminal to web hosting APIs with considerable ease. The limitation facing such an approach is due to instances wishing to run a .NET ASM. However, the limit is only significant in 32-bit architectures, which most smartphone and wearable edge-based processors cannot access. Remote access to the config server requires it, even with a virtualisation API layer at the backend. Image Credit: Google Corporation (image .NET source, Free Software Foundation, 1991; Google Images accessed 3rd January 2020)
GENERAL AIMS

The following general aims highlight the specific pathways followed in realising and developing the central tenet of “data-driven, Mediterranean, A.I. simulations and the ethical implications of embedded qualitative bias in digital twin deepfake games” The following general aims are stated here for evaluation context and lead in to the proceeding hypothesis.

1. Develop a case for the examination of ethical principles surrounding digitalisation and automation of scientific workflows via heuristic algorithms (for digital twins) (Review).
2. Develop high-resolution imagery and statistical techniques to enable heuristic measurements for a range of field/glasshouse/laboratory experiments.
3. Develop a real-time assessment workflow for processing mathematical algorithm measurements from a range of laboratory and field-based data source observations (phenotype and environmental data sources).
4. Implement and test a heuristics IoT workflow for captured data in laboratory, glasshouse, and field trials to determine accuracy and efficiency concerning variation.
5. Launch A.I. digital twin for real-time (Δ.t) deepfake game.
6. Create deepfake.
7. Run game, measure trust response then release the IP address to end the game.

HYPOTHESIS

Digital twins can be embedded and launched in AI manifolds for the statistical analysis of heuristics data, and for correlation and extrapolation of predicted outcomes to make ethical assessments.

Under increasing variability, predicted results based on environmental data sets used in ethical assessments may make artificial intelligence-based computer instances biased towards those environmental variables and data, and leads to ethical use of deepfakes in the current geopolitical landscape.
ASSUMPTIONS

1. The runtime environment specific to the supported hardware architectures’ is standardizable/scalable.

2. The operating gradient (clock speed temperature vs processing command iterations) that combine to execute the kernel operations are parametrizable within logical iterations (Boolean).

3. The software stack and SDK interactions with the RAM, GPU and CPU to issue the commands that generate hexadecimal hash keys used by the IDE and governor are ethically sourced and issued via software licenses.

4. Qualitative interpretation of quantitative data underpins all scientific hypotheses generated by computation independent of processing time.

5. The A.I. is Turing-complete (can complete the calculation).
METHODOLOGY
METHODOLOGY DISCLAIMER

Some of the methods presented in the general methods section were completed while working as an independent private consultant for Karl Corporation. As such, client names and the specifics of operations (done for those specific organisations) may be withheld for privacy and security reasons. The methods, however, are the most accurate reflection of the scientific detail and are the correct recollection of the overall methodological progress. According to the declaration statement at the beginning of the thesis.

A SMALL CONTEMPORARY THOUGHT EXPERIMENT AND QUESTION

Any thesis methodology should allow a philosophical argument to somehow be measured, quantified or defined. The reader is asked to consider as it relates to embedded A.I., and objective causality. The problem arises when the same argument is hypothesised over and over, without a consensus ever being reached (non-Turing complete). The thought is that we need to consider the root cause, to be able to understand the sum; however, in computer science, the sum is not part of a whole binary tree, the same as in genetics. Thus, our thought (appropriating cause in a simulation) is automatically thrown out by computers in statistical simulation experimentation, and herein lies the dependency (the notion of an inherited bias), which may continue to attribute cause again and again leading to no real solutions. How can we eliminate such bias as it relates to A.I., if in reality, there are no-real probable solutions at all anyway, and what are the natural implications of these bio-physical blips (assigning measurement to the ebbs and flows of life as it relates to life and light and the possibility of a new way of thinking) (Bohr, 1933)?

A NEW PURPOSE FOR DATABASE (LAKE) CONSTRUCTION: A.I. SIMULATIONS

The methodology combines state of the art, high precision, computer-based software engineering, informatics, sensors, light-medium and heavy instruments, industrial machines, UAV drones, quantitative laboratory, and wet chemistry analytics including genomic sequencer derived technologies; firstly to gather enough data, and secondly to support an independent hypothesis test. These environmental data lakes (metascopic data clusters), including raw data, metadata, and other data (phenotype and genotype data) (Manuscript 1 through 4) are used for determining qualitative risk factors, (for a Mediterranean environment)
the ethics of embedding statistical A.I. workflows for quantitative prediction outcomes to build a digital twin (for a novel Tibetan-Australian barley species population) based on its complementary digitalised phenotype metadata via a 5G/LTE real-time game simulation.

There is a progressive focus in each manuscript of implementing increasingly more sophisticated visualisations, instruments and technologies to describe and model the data in relation to the hypothesis for the final ethical assessment of the thesis; via a cloned, deepfake image 5G/LTE, real-time game. The reader is asked to evaluate the authenticity in real-time any perceived qualitative bias in this A.I., concerning the aims and hypothesis. The individual descriptions of instruments and technologies not concerning the computer hardware/software interface used for the digital twin deepfake real-time game are described in each manuscript respectively, to allow the reader to separate the environmental information from the computational. Where all instruments and data acquisition technologies were typically set up and configured using a programming stack and kernel similar to Unix, to issue commands, e.g. in C language, the purpose of the computation in this thesis is automation, connectivity, and compatibility to .NET assembly (IBM, 1990; Free Software Foundation, 1991). Based on data outputs and qualitative assessments made during the course of research and published in peer-reviewed journals, e.g. (Manuscript 1 and 2, Svatos, 2018; Svatos and Abbott, 2019 respectfully), these raw data (lakes) were initially described and set up for ethical data collection based on established peer-reviewed scientific workflows.

Before and after each manuscript, additional supporting estimates, references, data, results, and discussion are presented. The data for which the digital twins are finally compared to real-life scenarios also draw upon supporting metadata and APIs. It is through a data mining, acquisition and comparison approach (Manuscript 3 and 4) that these practices are used to develop the concept further. Which then leads to the general results section. It is through the software environment that the thesis seeks to unravel some of the complexities of data-driven methods, concerning qualitative bias in ethical decision making of real-time A.I., (deepfake game simulations) the manuscripts were necessary due to the continuing issue of data ownership but were also a means to the penultimate end of the computational game. A theoretical answer concerning bio-physical source code.

Lab and field-based environment datasets and metadata were collected (including from remotely sensing, functional microscopy derived, and sequencer derived instruments and their
Additionally, imagery derived, and raw data collected throughout the research (manuscripts) and projects are summarised in terms of statistical outputs, matrices, or as visualised vectors (plot summaries), through the development of a range of analytical performance protocols as part of the aims related to an initial procedure (Svatos, 2018).

COMPUTATIONAL VISUALISATION AND PROGRAMMING PROTOCOL

The thesis investigates the embedded potential for quantitative software bias, given that ethical assessments are ‘a priori’ qualitative by nature. It includes an unpublished program application and a new mathematical proof (unpublished). The original research of Richard Greenhalgh with the author (Greenhalgh, 2002; Svatos, 2018), and relates to the principle that TCP/IP protocols (addresses) linked to people will always be our primary digital fingerprint as initially intended (IBM, 1989; Stine, 1990; Johansen et al., 2016). The species and the database construction in this thesis are all linked (but not limited) to Mediterranean climates that support; (i) aquatic invertebrate hairy marron crustaceans (and the associated phosphate and silicate mineral interactions), (ii) a dairy cattle herd (and associated nitrogen fertiliser, dairy farm soil management scenarios through associated microbial communities), (iii) a Tibetan-Australian barley population (and associated heat-drought-frost scenarios that affect the food and beverage industry), and (iv) Mediterranean soil environments as they are used in the building regulation process. Using an already described method for which the author led the visualisation software development, e.g. Abbott et al., (2012); here a range of SoC and FPGA chips were modified (advanced kernel I/O flash, recovery, and stock(y) implementation) and embedded across multiple assemblies to test flexibility and accuracy concerning their architectures; for a range of different quantitative statistical procedures.

There were three primary considerations concerning software development for these protocols presented in the thesis that generated the isotherm plots, PCA, CCA (and machine learning derived visualisations). They were:

1. The developer runtime environment does not need to be specific to the supported hardware architectures. Relative compatibility.
2. The operating gradient (clock speed temp vs processing command iterations) that combine to execute the kernel operations is flexible and scaleable.
3. The software stack and how the SDK interacts with the RAM, GPU and CPU to issue the commands that generate binary hexadecimal hash keys used by the IDE and
governor (governor = most basic description of an automaton computer) is at least physically secure.

IOT PLATFORM STACK, DECISION TREE AND PENETRATION TEST

To facilitate the data collection, storage, analytics, and implementation of A.I. decision making, (based on statistical analyses and data collection); a custom platform stack was designed from the hardware base up (IBM, 1989; Free Software Foundation 1991; Greenhalgh, 2002; Shotts Jr 2009; Svatos, 2018). Based on the .NET architecture (IBM, 1990), (obtained externally in 1987 from IBM and continually developed and improved by the author) a 64-bit embedded assembly language, kernel, IDE and the SDK was then used to scale across the three cloud networks (AWS, Azure, Google) using security-based TCP/IP configurations (via a remote shell APN) to determine decision tree ‘best-fit’.

To test the security of data collected, a penetration test was set up (within the Microsoft Windows IoT core OS). An embedded .NET assessment was then flashed using a pythonic base build of the 64-bit ARM architecture and Broadcom SoC SDK’s to assess *.dll compatibility over the python wrapper interface measuring in the 2.4 GHz ISM Band (IBM, 1989; Stine, 1990; Johansen et al., 2016) including Bluetooth® special interest group (SIG) protocol (based on pseudo-random frequency hopping theory) (Grimsley et al., 2019). If compatible, the implementation would scale across the various IoT cloud infrastructures to allow for latency testing, thus serve to meet the current and IoT needs of research in that virtualisation framework concerning the database (lakes). And allow for expansion of digital twin implementation in cloud-based .NET APIs. For this purpose, the Microsoft Azure (including the Powershell terminal and platform-tools) for cloud processing servers was the most suitable option. Azure cloud instances were spun up and tested for, development and deployment of libraries and tools including for (R, Python, Matlab, Anaconda, Jupyter, and Docker). Separate modifications were tested using cloud-based APIs and batch-based scripting tools embedded securely into the system.io for a range of analytics, analysis and GPU and CPU virtualisation/visualisation (via desktop and remote shell commands). These chip modifications (kernel modifications) were assessed by comparing the compatibility of various custom builds versus stock builds (of LTE/5G smartphones), including (custom ROM’s over Samsung-Korean and LeEco LeTV-Chinese, builds and baseband models). Then by assessing the compatibility of custom APIs over the non-stock API architectures (custom firmware
applications) to see if the kernel could scale across separate cloud servers for telematics (autonomous drone control and data collection), without the need to register the API through the SDK remotely (for example via Bluetooth SIG) (Figure 8).

DIGITAL TWIN LATENCY ASSESSMENT

Real-time prediction potential \(t \) was assessed across multiple nodes and bootstrap islands or as Boolean logic gate channels (API hosted) through a secure ASM (.NET assembly) for frame rate latency visualisation \(\Delta \). To determine whether the hypothesis should be accepted or rejected, the real-time mean latency spikes were compared to the base latency by creating a digital twin for the processing of multi-node API data islands of all linked storage containers and buckets (TCP/IP related sockets). Data collected through the use of high precision imaging devices, drones and specifically cloud and edge-based core processing devices (including those using the 32-bit architecture IDE *.syswow emulation layer). Instances and storage containers were created (using the IP addresses provided by The University of Western Australia, Murdoch University, The Government of Western Australia, Kazusa DNA Research Institute, or through the publicly available domain list through Google via Gmail, and Microsoft via Hotmail), on the Amazon (AWS console), Pawsey (Western Australian Supercomputing Center), Dropbox, and Google (Google console, Android-firebase, Google Images, Google Drive).

Processing and decision making were then correlated via implementing an advanced security IP address configuration policy via the Google console and AWS instances to link the public...
domain (IP addresses) to the privately hosted containers (buckets); those that contained the raw data, the statistical outputs, and the digitalised images. Including the pseudonym moniker bot and bot.net accounts connected to Microsoft (Github) libraries associated with karldroid, Karl-Droid and other affiliated accounts, e.g. Samsung, LeECo, affiliated through email account setup and configuration; (https://console.cloud.google.com/home/dashboard?project=iff-t-iot-coms-sat&cloudshell=true; project number 788549351193). These were implemented to activate, and setup sideloading of apps and bypass the security protocols (penetration test) for advanced kernel implementation concerning GPS, weather station, and satellite data via creating batch processes using python over the .NET framework through the Optus, Pivotel, and Telstra 3G/4G/LTE and satellite telecommunications networks (IBM, 1989; Krantz et al., 1989; IBM, 1990; Stine, 1990), https://forum.xda-developers.com/member.php?u=7329463, https://github.com/Karl-Droid). Setting up a pythonic ARM64 based .NET assembly based on the ARM and Broadcom SoC architecture (https://docs.microsoft.com/en-us/windows/iot-core/developer-tools/python), and linking the embedded .NET assembly to several IP addresses containing the datasets collected throughout the course of study, enabled measurement of .NET API latency over a millisecond timescale.

It was expected that if the mean latency API spikes generated in real-time were not ‘flat-lining’ that the hypothesis may be accepted (relative to the background latency ebbs and flows).

REAL-TIME DEEPFAKE A.I. GAME SIMULATION

The intent of the game simulation was to measure response in real-time. Statistical in the approach and leadup to the general methods, and based on all manuscript data and methods concerning the aims (digital twin latency visualisations).

An image was taken on a Samsung Galaxy tablet (camera) of the Tibetan-Australian barley grain grown by the author at Department of Industry and Regional Development (Manuscript 3). The image colours were then highlighted based on their natural form (naturally segregating black and white grain colours indicated by phenotypic trait measurement in the laboratory for 120 doubled haploid (DH) lines followed by shotgun sequencing, and RNA sequencing for cluster matrix determination of expression data). And, owing to the complexity of this genetics, the analyses and multi-transcription factors involved in the expression of the colour trait itself (multi-environment expression variation). A deepfake version of the grain image was created
for simulating the game (inversion of the grain colour trait in the computer image); a simulated measurement of a reader's response on the suggestion that the image is either real or fake (via the digital twin linked to the Google satcom IoT IFFT remote shell .NET API). In this simulation; the digital twin (linked to IP address network stack), would be used to measure a response of the reader to the knowledge that one is real and one is fake, on the premise that both colours exist in nature, but one was not grown at all. The implication of that knowledge as it relates to its use (and the reader's reaction assessed quantitatively by the A.I.); concerning qualitative underpinnings of the ethics of the existence of that fake data being in existence. To simulate the end of the game the original IP addresses were released (after the latency measurement); (indicating that a trust relationship had been established over an A.I. interface remotely with the reader in this simulated game).

Additional qualitative analyses are interpreted as it relates to the statistical outputs of each manuscript, and those are given contextually concerning similar ethical assessments at the end of each chapter. Including the cultural and philosophical context concerning the A.I. ethics thought experiment (A.I. game simulation) as it relates to the thesis discussion in the findings and recommendations. A final outlook is provided, as it relates to the objectivity of the thesis concerning future improvements, impedements, and methods for implementation.
RESULTS CHAPTERS
MANUSCRIPT 1: SCOPE, SIGNIFICANCE TO AIMS, AND DECLARATION

Land management, clearing and engineering have resulted in estuarine phosphate complex (and perhaps also nitrogen) pollution. Areas specifically implicated include those Mediterranean environments that have undergone significant channel erosion due to blast dredging (since colonisation in the 1800s) and include the Swan Canning estuary and extend to Esperance (excluding Margaret River). Svatos, (2018) was published in the Springer Nature Journal, Environmental Science and Pollution Research.

This publication defines the means of data collection techniques required for predicting soil physical properties and interactions with the environment using instrumental analysis and basic visualisation software algorithm modelling (environmental isotherm plots). The central tenet seeks to simulate the complex relationships that particles (framework aluminosilicate lanthanum phosphate rare earth complex nanoparticles) have with the southwestern Australian Mediterranean estuarine environments in a quantitative laboratory experiment. Both interpolated and extrapolated data are visualised through the use of a ‘basic’ computing software kernelisation algorithm ‘plots’ to simulate the environmental behaviour of the framework silicate lattices (including in the JEOL 2100F spectrum photometer electron microscope <2.5 x 10^-5 Pa platform, vacuum column) (Figure 9). Data related to bio-accumulation and environmental fate specific to the endangered (possibly extinct) freshwater hairy marron invertebrate, due to the invasion of more a competitive marron species are discussed.

Since literature and follow-up publications have called for additional research in the form of eco-toxicology studies, there is a section at the end of this manuscript called ‘late developments.’ Although part of the methods was completed at the University of Western Australia; the primary means of data analysis was done at Murdoch University, through the creation of instances linked to Amazon Web Services and other web hosting facilities, which connect to later works including general methods, results and discussion. The institutional address is listed as UWA; however, this publication was only made possible through additional support provided by Murdoch University while enrolled in the PhD program (Murdoch University email address contact). This entire work is my own and has not been content amended (except for text formatting for the thesis).
COMMERCIAL SILICATE PHOSPHATE SEQUESTRATION AND DESORPTION LEADS TO A GRADUAL DECLINE OF AQUATIC SYSTEMS

Karl B. W. Svatos

ABSTRACT

Laboratory desorption behaviour, function and elemental composition of commercially marketed silicate minerals used to sequester phosphorus pollution as well as Zeolite, Smectite, and Kaolinite were determined to see whether their use by environmental scientists and water managers in eutrophic waterways has the potential to contribute to longer-term environmental impacts. As expected, lower phosphorus concentrations were observed, following treatment. However, data relating to desorption, environmental fate and bioavailability of phospho-silicate complexes (especially those containing rare earth elements) appear to be underrepresented in product testing and trial publications. Analysis of desorption of phosphate (P) was > 5 μg[P]/L for all three non-commercial samples and 0 > μg[P]/L > 5 for all commercial silicates for a range of concentrations from 0 to 300 μg[P]/L. Based on a review of bioaccumulation data specific to the endangered Cherax tenuimanus (Hairy Marron) and other endemic species, this is significant considering anything > 20 μg[La]/L is potentially lethal to the hairy marron, other crustaceans and even other phyla. Where prokaryotic and eukaryotic effects are underreported, this represents a significant challenge. Especially where product protocols recommend continual reapplication, this is significant because both the forward and reverse reactions are equally important. The users of silicate minerals in water columns should accept the dynamic nature of the process and pay equal attention to both adsorption and desorption because desorption behaviour is an inherent trait. Even if broader desorption experimentation is difficult, expensive and time-consuming, it is a critical consideration nonetheless.

Keywords Silicate minerals. Phosphate sequestration. Environmental fate. Instrumental analysis
INTRODUCTION, BACKGROUND AND SCIENTIFIC CONTEXT

The United States Public Health Standards limit for phosphates in drinking water is 100 $\mu g[P]/L$, and the American, Environmental Protection Agency, suggests a limiting value of 80 $\mu g[P]/L$ for phosphates in lakes and reservoirs (USEPA, 1976). In south-western Australia, trigger values used to identify adverse concentrations of nutrients (e.g. total and filterable reactive phosphate) for a range of disturbed waterways are much less, and range between 5 and 65 $\mu g[P]/L$. Reviews for aqueous systems (Copetti et al., 2016; Douglas et al., 2016; Kurzbaum et al., 2017) have shown that silicate minerals and compounds derived from silicate minerals containing rare earth bentonites and aluminium sulphate-based compounds can improve water quality, clarity and benefit the end user when applied to water bodies high in phosphate.

The chemistry of phosphate sorption by framework silicates is a well-known phenomenon (Kafkafi et al., 1967; Bowden et al., 1977). The reaction forms an inner-sphere surface complex between a phosphate group and a metal cation which is bound to a hydroxyl group (Goldberg and Sposito, 1984). Phosphate sequestration effects can only be determined by examining both the particle absorption and desorption behaviours of the environment in question because the mechanism has both forward and reverse parts (Kafkafi et al., 1967; Uusitalo et al., 2000). Environmental parameters related to the forward and reverse reactions include (i) stability of the water column, (ii) temperature, (iii) nutrient balance (limiting phosphorus and nitrogen concentrations), (iv) light concentration, (v) pH, (vi) carbon content (humic substances), (vii) the presence of specific cations and anions, (viii) dissolved oxygen concentration, (ix) adsorption surface medium(s) and (x) biological influences (Grim and Güven, 1978; Hemond and Fenchner-Levy, 1999; Uusitalo et al., 2000; Lürling, 2014; Stroom and Kardinaal, 2016). Therefore phosphate silicate reactions within the solution are not fixed, the phosphorus is recoverable if a low enough surface activity is induced Kafkafi et al., 1967).

Reviews and research papers on silicate minerals including commercially available products by (Robb et al., 2003; Ng et al., 2016; Stroom and Kardinaal, 2016; Lin et al., 2017) have suggested that eukaryotic and prokaryotic microorganisms including algae, certain bacteria and macrophytes, which are involved in accelerating eutrophication upon treatment are attracted to the surface and deposited. Desorption rate and concentration do not receive the same attention in the same reviews and research papers.

Commercially available composite sheet silicate minerals used in the water clarification industry include Phoslock™, Baraclear™ P80 (Halliburton) and Bunnings Zeolite (Wesfarmers). Phoslock™ is an aluminosilicate substrate with a three-dimensional framework modified via cation exchange with complexing elements selected from Group IIIB rare earth lanthanides. The compound
in solution subsequently forms insoluble rhabdophane when in contact with aqueous phosphate, and precipitates out of solution. Zamparas et al., (2015) provide a full explanation. The manufacturer of Phoslock™ suggests applying the material to the surface of the water or injecting it into the sediment bed (Douglas, 2002; Stauber and Binet, 2002; Robb et al., 2003; Douglas et al., 2016; Kurzbaum at al., 2017). In 2011, Phoslock™ received the US and Canadian drinking water certification (60 NA, 2017).

Haliburton’s Baraclear™ P80 is a water clarification additive for the water treatment market. It is available as tablets and briquettes for organic and inorganic contaminant treatment, including phosphorus and turbidity control (Halliburton, 2005). The composition of Baraclear™ P80 according to its MSDS is as follows: 1–5% crystalline silica species (cristobalite, tridymite and quartz), 30–100%, aluminium sulphate, and 30–100% sodium bentonite deposits from Wyoming (Smectite). Elemental Wyoming Bentonite from Western County, Belle Fourché is represented by the equation \[\text{M}^{+0.38}\]. The \(\text{M}^+\) represents a metal cation either Na+ or K+ and is understood to be the site for adsorption controlled by a range of forces in solution (Kafkafi et al., 1967; Grim and Güven, 1978; Hemond and Fenchner-Levy, 1999; Lürling, 2014). The manufacturers of the Baraclear™ P80 claim that their product addresses (i) colloidal inorganic sediment, (ii) suspended organic matter and (iii) inorganic phosphate molecules. Baraclear™ P80 is an efficient way to clarify natural and industrial waters, and remove phosphorus (Halliburton, 2005).

Zeolite is a microporous, aluminosilicate mineral. Zeolites are used in the construction of ion-exchange beds in domestic and commercial water purification, softening, and for other applications such as nitrogen and phosphorus removal from natural water bodies (Douglas et al., 2016). As a product, it is widely available commercially through various hardware and landscape supplies stores in Australia and is distributed by Wesfarmers Pty Ltd. The main difference between Zeolites and their commercial Smectite neighbours (Phoslock™ and Baraclear™ P80) is that Zeolites are sold mostly in their natural form. The process of phosphorus removal is still the same except in Zeolite solutions the composition is not altered by the addition of other compounds.

THE NEED TO EXAMINE MANUFACTURES’ CLAIMS

There is the possibility that long-term re-suspension of phosphorus or foreign silicates alter complex chemical pathways related to the biodiversity of prokaryotic microorganisms as suggested by Ng et al., (2016), and Lin et al, (2017), with a flow-on effect throughout the ecosystem to eukaryotes like various crustacea. Lin et al., (2017) found that Phoslock and aluminium sulphate both had effects on submerged macrophytes and a study by van
Oosterhout et al., (2014) indicated that the trace element Lanthanide (La) present as rhabdophane in Phoslock™ was bioavailable in the lobster species Procambarus fallax f.virginalis. La concentrations measured within various tissue samples including reproductive tissue contained sufficient levels of La to warrant further investigation. So far, no regulatory thresholds for rare earth element concentrations and inputs into the environment are established because information on risks and effects are scarce; however, rare earths are being used more and more by society and publications on risk are starting to emerge in relation to combined effects (Sun et al., 2013). Herman and Sultan, (2016) reviewed bioaccumulation and ecotoxicity of La in aquatic environments for organisms (prokaryotic and eukaryotic) and suggested that significant sensitivity concentrations vary between .02 > mg/L > 47 (for a range of aquatic environments). Increasing reported instances of eutrophication and increasing use of silicates to sequester phosphorus thus justify the need to scrutinise this aspect of product usage.

MATERIALS AND METHODS OF INSTRUMENTAL ANALYSIS

Three commercially available products derived from framework silicates were investigated for this research: (i) Baraclear™ P80 (Halliburton), (ii) Phoslock™ (IMT Holdings) and (iii) Bunnings Zeolite (Wesfarmers). Two noncommercial silicates were also included (i) Gilkes Smectite and (ii) Greenbushes Kaolinite. The five products were assayed using the following instrumental analyses: (i) XRD, (ii) XRF, (iii) HR-TEM and (iv) TEM.

A 0.5–5.0-g sample of each product was made into powder with mortar and pestle and analysed with Cu-ka radiation with 20 values from 0° to 80° on a Philips PW-1830 X-ray generator with a PW 3020 diffractometer (PANalytical, Almelo, the Netherlands). The d-spacing values were then used to determine major and minor mineralogical compositions present in each sample (Wittig and Allardice, 1996). Following this, samples were assayed for major and trace elemental concentrations by the preparation of a Norish Flux mixture (fused beads) of lithium metaborate/tetraborate (12:22) on a Philips PW-1404 X-Ray fluorescence spectrometer (PANalytical Almelo, the Netherlands). Determination of the major compounds within each sample (Al₂O₃, SiO₂, TiO₂, Fe₂O₃, MnO, CaO, K₂O, MgO, Na₂O, P₂O₅ and SO₃), and of trace elements (V, Cr, Ni, Cu, Zn, Rb, Sr, Ba, Zr and Co), and concentrations of La (mg/ Kg) (for Phoslock™) were accurately determined via the methods of Sulcek and Povondra, (1989), Norish and Thopson (1990), and Karathanasis and Hagek, (1996). HR-TEM and TEM images were taken using either the JEOL Transmission Electron Microscope 2000 or 3000F (JEOL Inc., Massachusetts, USA) spectrophotometer platform. Using Bragg’s Law (λ = 2dsinθ) and by adjusting the eucentric height, beam tilt and aperture alignment images taken both in digital and print formats were used to determine structural
information including (i) texture, (ii) topography and (iii) any surface features to help determine environmental fates, and complex ion deposition behaviour (in conjunction with the other analyses). Adsorption and desorption of phosphorus were calculated using direct calibration of stock phosphate (KH$_2$PO$_4$) concentration standards (Motomizu et al, 1983). Batch analyses included three replicates measured to four decimal places. Solutions of 0.1 M KCl, malachite-molybdate green oxalate and PVA (polyvinyl alcohol) were prepared as described in DOSSPN, (2000). Samples of silicate (0.2 g, three replicates) were spiked with stock phosphorus solutions (0, 100, 200 and 300 μg[P]/L). Solutions of each treatment were made up to 10 mL (0.1 M KCl) and weighed. The pH was buffered to 7 using aliquots of KOH at timed intervals to minimise speciation effects [H$_2$PO$_4^-$]/[HPO$_4^{2-}$] (Barrow, 1983). Samples were tumbled end over end for 232h and the supernatant solutions decanted after being centrifuged (40 min @ 4000 rpm) then filtered (0.25-μm micro-disc) for UV/VIS spectrophotometric analysis. To the precipitate 15 mL, KCl was re-applied, and the solutions tumbled end over end for a further 232 h. The supernatant solutions were then filtered (0.25-μm micro-disc) for UV/VIS spectrophotometric analysis. Spectrophotometric analysis was on the Shimadzu UV mini 1240 uv-vis spectrophotometer (Shimadzu Corp., Tokyo, Japan). Throughout this experiment room temperature was kept constant to minimise isotopic anion exchange differences. Aliquots (∝ 3) were taken from each of phial and mixed with 1 mL malachite- molybdate green oxalate/PVA complex solution (DOSSPN, 2000). Cuvets were assayed for the absorbance of light against the standard absorbance phosphate concentration curve via single-step measurements of light penetration (λ = 25 nm) (Motomizu et al., 1983). Y-intercepts were set to zero for interpolation of values less than five μg[P]/L. Direct desorption for each silicate mineral was plotted for all replicates vs. initial concentration (Hemond and Fenchner-Levy, 1999).

RESULTS AND DISCUSSION

INSTRUMENTAL ANALYSIS OF SILICATE SAMPLES

All samples contained various amounts of aluminium oxide/hydroxides, present as Smectite, Kaolinite, and heulandite (Baraclear™ P80 (15.18%), Phoslock™ (11.16%), Greenbushes Kaolinite (39.26%), Wesfarmers Zeolite (12.25%), Gilkes Smectite (16.29%)). XRD, XRF, HR-TEM and TEM images show the major and minor mineralogical, and the morphological, and elemental and trace components in each of the samples (Table 2 and 3 and Figure 10). Bowden et al., (1977) similarly showed that the relative proportion of oxide/hydroxide surfaces in each sample is approximately proportional, to the amount of phosphate adsorbed in solution (Figure 11a). The similarity of Gilkes Smectite to Greenbushes Kaolinite in both elemental composition as determined by XRD and XRF and the resulting adsorption observations of behaviour
also reflects this with almost equal amounts of phosphate adsorbed in solution for each concentration applied (Table 2 and 3).

The amount of aluminium oxide/hydroxide in the other samples analysed was not equivalent to the amount of phosphate adsorbed indicating the influence of contributing factors.

Figure 10: HR-TEM (JEOL 3000F) digital (*) and TEM (JEOL 2000) developed print images (#) and their scale. From top left to bottom right include (1) Phoslock™ (*), (2) Phoslock™ (#), (3) Baraclear™ P80 (#), (4) Zeolite (*), (5) Greenbushes Kaolinite (*) and (6) Gilkes Smectite (#). Image 1: Observation of the (1.0 μm) TEM Phoslock™ image shows two distinct particle masses. These masses include a homogenous, dark, clumped mass of randomly orientated smectite layers and an aggregated heterogeneous mass most likely the Al,K,Fe,La(OH) complex as determined in the XRD analysis. Smectite clumps represent approximately 80% of the total image and the complex represents approximately 20% of the total image. Image 2: Observation of (100 nm) TEM image shows uniform wafer smectite pores within the crystal lattice structure ranging from < 10 nm in This part of the sample is most likely aluminium sulphate and takes up 75% of the total mass displayed in the image. A much finer wavy homogenous, randomly orientated mass (possibly smectite) is also present in this sample, in the upper left quadrant and takes up 20% of the mass in focus. Image 4: Observation of zeolite images shows a framework structure with enclosing cavities occupied by larger space with considerable freedom. The monoclinic zeolite (heulandite) is an aggregated crystalline mass. The image shows an overlaid crystal lattice structure. The texture of the lattice indicates that the elemental composition is ordered, which is shown by layers of (Si,Al)O₄ tetrahedra linked in a framework pattern. Image 5: Greenbushes kaolinite, extends as sheets with a layer composition diameter to < 100 nm. Also present in the image is a fine white structure possibly Al,K,Fe,La(OH) complex mass, which is associated to the wafer pores around the edges of the lattice structure. Image 3: The 200 nm Baraclear™ P80 TEM image shows a 3D structural lattice with large pore spaces of homogenous pores within a crystal lattice structure ranging in diameter from 1 to 200 nm. formed by the linkage of SiO₄ tetrahedra in a hexagonal array (West, 1999). This formation results in a single layered triclinic unit cells of Al₂Si₄O₁₀(OH)₄(Kaolinite). Image 6: The Gilkes Smectite image shows a heterogeneous array of porous aggregates in a structural matrix. The stacking of layers within the matrix is disordered (turbostatic).
Table 2 Interpretation of d-spacing peak values (in italics) from XRD traces (number of counts vs. degrees 2θ) reflects the elemental composition of mineralogical components including (i) dominant silicates and aggregates present (bold), (ii) complexes (if present), (iii) charge (if apparent), (iii) occurrences of lesser polymorphs and (iv) other minor components (if present), in each silicate mineral (bold italics). Each cell also includes the common name of the sample.

Phoslock™

14.43-Di-octahedral smectite

\((1/2\text{Ca,Na})_x\cdot[(\text{Al,Mg,Fe})_y](\text{Si,Al})_z\cdot\text{H}_2\text{O}\) aggregates; 8.945, 5.694, 3.757-

Baraclear™ P80

13.301-hydrated aluminium sulphate complex, \([\text{Na}_2\text{SO}_4\cdot\text{Al}^{3+}\cdot2\text{SO}_4\cdot72\text{H}_2\text{O}]\); 4.476-

Gilkes Smectite

15.438, 4.445, 3.079, 2.534, 1.975, 1.5-aggregated smectite, \(\text{Al}_4\text{Si}_2\text{O}_5\cdot(\text{OH})_2\cdot\text{H}_2\text{O}\) (charge bentonite); 2.442-

Greenbushes Kaolinite

7.087, 4.431, 3.553, 2.333, 1.486-kaolinite, \(\text{Al}_2\text{Si}_2\text{O}_6\cdot(\text{OH})_2\); 1.486-

Wesfarmers Zeolite

12.475-smectite, \((1/2\text{Ca,Na})_x\cdot[(\text{Al,Mg,Fe})_y](\text{Si,Al})_z\cdot\text{H}_2\text{O}\); 8.945, 5.694, 3.757-

Factors that can further contribute to the proportion of phosphate adsorbed include the presence of \(\text{SO}_4^{2-}\) in the case of Baraclear™ P80 and rare earth lanthanides, e.g. \(\text{Ba}^{2+}\), \(\text{Sr}^{2+}\) and in particular \(\text{La}^{3+}\) in the case of Phoslock™ (Zamparas et al., 2015).

Table 3 XRF data displayed represents the major (bold) and rare earth (bold italics) trace elemental compositions of each silicate mineral (mg/ kg) and percentage (%). Mineralogy of each sample is also presented as (%) based on XRD mineralogical composition determinations (italics).

Phoslock™

(SiO\(_2\) = 57.31%) (Al\(_2\)O\(_3\) = 11.16%) (Fe\(_2\)O\(_3\) = 2.69%)

(La 38,351 mg/Kg) (Ba 430 mg/Kg) (Sr 133 mg/Kg) (Rb 122 g/Kg)

92–95% smectite, 4–6% lanthanum complex and 1–2% quartz

Baraclear™ P80

(SiO\(_2\) = 35.75%) (Al\(_2\)O\(_3\) = 15.18%) (SiO\(_2\) = 4.7%)

20–30% smectite, 70–80% aluminium sulphate and 1–5% quartz

Gilkes Smectite

(SiO\(_2\) = 54.12%) (Al\(_2\)O\(_3\) = 16.29%) (Fe\(_2\)O\(_3\) = 4.04%) (MgO = 3.34%)

80–90% smectite, 5–10% kaolinite and 1–5% quartz

Greenbushes Kaolinite

(SiO\(_2\) = 46.55%) (Al\(_2\)O\(_3\) = 39.26%)

90–95% kaolinite and 5–10% traces of the lesser polymorphs dickite and hydrated halloysite

Wesfarmers Zeolite

(SiO\(_2\) = 68.17%) (Al\(_2\)O\(_3\) = 12.25%) (K\(_2\)O = 3.36%) (CaO = 2.33%) (Fe\(_2\)O\(_3\) = 1.62%) (Ba 611 mg/Kg) (Sr 555 mg/Kg)

75–85% heulandite, 10–20% smectite and 5–10% quartz

Both Phoslock™ and Baraclear™ P80 exhibited higher adsorption values across all phosphorus concentrations tested against, yet have only 12 and 16% total aluminium oxide, respectively (less than the average of all silicates examined). This observation was most marked for Baraclear™ P80, with the amount of phosphate adsorbed across all
the phosphate concentrations being higher than the others mineral samples. This observation is consistent with Lin et al., (2017). Phosphate sequestration was more directly related to the specific reaction conditions (i.e. pH 7, buffered, controlled temperature) and the elemental composition of each sample, with a lesser influence coming from the proportion of hydroxide/oxide in the silicate minerals (except for the two almost identical silicates). This observation is supported in Zamparas et al., (2015), and Douglas et al., (2016) in relation to silicate/aluminium sulphate compounds, Phoslock™ and Zeolite. The amount of phosphate desorbed into solution increased with increasing phosphate concentration for all samples indicated by +ve regressions (Figure 11b). The maximum amount desorbed was approximately 30 μg per 2.0 g (300 μg/L initial solution) for Greenbushes Kaolinite and the minimum amount desorbed was 2.3 μg per 2.0 g (300 μg/L initial solutions) for all three commercial silicates. Because the desorption values at all concentrations for the three commercial products in relation to phosphorus (for the controlled experiments) are below trigger values for sensitive estuarine ecosystems (5–60 μg[P]/L), one can surmise that these products are efficient. However, do regular additions of silicate minerals to control phosphorus in eutrophic water bodies contribute to a further decline on other faculties that may be buffering the system (Hemond and Fenchner-Levy, 1999; Lin et al., 2017)? Given that the amount desorbed was greater than zero, and given the requirement of continual additions for effective treatment, questions of gradual decline and bioavailability are significant. Uusitalo et al., (2000) discusses suspended soil as a source of potentially bioavailable phosphorus in surface runoff.
CASE EXAMPLE
Phoslock™ which was promoted in Swan Canning Phoslock™ trials in Western Australia (Robb et al., 2003) and also in the Vasse River (Mr. R. Mildwaters- Facebook Vasse River Community Action Group, personal communication, 3rd January 2017). It is unclear whether lethal dose (LD) values for invertebrates and vertebrates, other than Rainbow Trout, were considered for their product, given the 3.8% concentration component of lanthanum present in Phoslock™ (Table 3). It is also unclear whether deposition effects of silicate complexes at this site were tested to determine if Phoslock™ may have changed estuarine dynamics, for example in relation to macrophyte populations (Lin et al., 2017). It may be the case that broader management practices from other environments, not necessarily estuarine, have been used and written into their methods and disclaimers (Stauber and Binet, 2002; Robb et al., 2003; NIWA, 2004; Douglas et al., 2016; 60 NA, 2017).

van Oosterhout et al., (2014) indicated that all La concentrations measured within the various tissue samples including reproductive tissue contained sufficient levels of La to warrant further investigation. At the time of the Swan Canning Phoslock™ trials, no mention of LD-La was made in relation to Crustacea. Given that there are two known populations of aquatic marron and yabbies (C. destructor) found in these two systems including the critically endangered C. tenuimanus in the cooler waters of the Vasse Region and the species which is outcompeting it C. cainii this oversight is concerning. Robb et al., (2003), the researchers stated that Breducing the efflux of P from the sediments can alter the overall P availability, reduce phytoplankton biomass and cause a change in phytoplankton species composition, the significance of these changes has yet to be examined. It is unclear whether La has contributed to a decline in the Vasse Region hairy marron population. Perhaps the ecosystem shift has enabled C. cainii to displace it. No other publications on this subject from southwestern Australia are known. Due to the initial treatment being almost 20 years ago, it would be a compelling case to relook and investigate long-term effects given similar species exist in Tasmania and elsewhere that may experience a similar fate (Stauber and Binet, 2002; 60 NA, 2017; Zwartz, 2017).

CONCLUSION & RECOMMENDATIONS
Although this study shows that the silicate mineral products serve their intended purpose (alleviation of eutrophication specific to phosphorus pollution to benefit the end user), there needs to be a further investigation because of uncertainties in relation to continual use in ecosystems if applied in the long-term (> 10 years). Given recent findings on rare earth lanthanide toxicity (van Oosterhout et al., 2014) specific to the Phoslock™ trials reported of Stauber and Binet, (2002), and Robb et al., (2003) in the Canning and Vasse regions, continual reapplication may be unwise where there is a threat
to critically endangered crustaceans. As Phoslock™ now has drinking water certification consideration of the published datasets on lethal dose, lanthanum concentrations are required because very little research has been done. Continual Baraclear™ P80 use, with the significant aluminium sulphate component, may also have an impact on the ion activity (pH, EC or others) in aquatic systems containing macrophyte populations, especially in small or closed systems devoid of natural sulphate inputs, unlike the estuaries or river deltas in the studies by Ng et al., (2016) and Fichot et al., (2015). Although Zeolite is commercially sold, it is significantly less altered from its natural state, and similar to Smectite and Kaolinite and, the adsorption and desorption data suggests that it is equally efficient.

While not providing definitive answers, this study demonstrates the significance desorption plays and

the use of phosphate sequestering silicates in the field of environmental science by water quality managers and environmental scientists.

ACKNOWLEDGEMENTS

The author would like to acknowledge Emeritus Professor Jim Quirk for continuing support later on in life, Emeritus Professor Robert Gilkes for the help with the mineralogical interpretation and professional advice, Emeritus Professor Lynette Abbott for long-term professional advice, Professor Andrew Rate for the advice on analytical chemistry techniques, Michael Smirk, Elizabeth Halladin and Gary Cass for the technical support, and Kim Angus for the editorial support.

COMPLIANCE WITH ETHICAL STANDARDS

CONFLICT OF INTEREST

The author declares that he has no conflict of interest.
THE USE OF DEEPFAKES IN CULTURAL CONSERVATION AND POPULATION CONTROL STRATEGIES

Svatos, (2018) focuses on the statistics of adsorption, including the source of metadata derived from environmental experiments required for the assessment of a deepfake simulation (concerning hairy marron). It doesn’t simulate deepfake outcomes due to cultural reasons.

Existing literature values used to estimate bioaccumulation and toxicity specific to the hairy marron, may benefit from a digital twin simulation and provide the best strategy for modelling bioaccumulation concerning the hairy marron; due to the highly likely, now extinct status of this animal. On the ethics of such an approach “Comment on Svatos” Douglas et al., (2019) validates the hypothesis. “Comment on Svatos” is similar to Hackley and Stefaniak, (2013).

They suggest that additional methods of instrumental analysis can potentially eliminate sources of errors in environmental monitoring equations; without actually testing the proposed model species (only proposing lab-based validation by synchrotron nuclear spin magnetic resonance spectroscopy).

Bioaccumulation in crustacea is already known in the marbled crayfish (Goitom, 2011) (Figure 12). The life span of hairy marron can be longer than ten years as is with other members of the freshwater crayfish lineage (Austin and Bunn, 2010). By providing initial results and data regarding the statistical measurement of environmental parameters from a laboratory-based mathematical viewpoint, Svatos, (2018) clarifies the issues with lab-based prediction and simulation, through isotherm plots and high-resolution imagery. Gutekunst et al., (2018) offer a different basis of genetic sequences which may be used for a simulated population comparison (for digital twins) through modelling rapid invasion of haploidised marbled crayfish (Mehta et al., 2015). A digital twin game would serve to add valuable genetic and environmental data interpretation without destroying the habitat of these (if remaining) invertebrates. The genetics of these crustaceans are similar, and so digital twins could be used to see if supporting environmental datasets and genetic sequences may result in differing statistical outcomes (for both species). Whereas the hariy marron is a localised the marbled crayfish is a rapid invader. If we consider habitat independently through double-blind selections; qualitative assessment of outcomes concerning conservation status of the hairy marron would be able to be hypothesised and tested. Although the data ownership

Figure 12: Although the aquarium variety of marbled crayfish resembles that of the common Australian yabbie, the phyla are poorly understood concerning their ability to clone each other (a strategy known as ‘selfing’ in the aquarium industry). Including this aquarium bred ‘yabbie.’ Image credit: Mr. N. Svatos, 2020.
concerning A.I. wouldn’t be ethical due to prior claims indigenous communities may have concerning its cultural status. An ethical game simulation might incorporate the qualitative nature of indigenous data ownership into the digital twin genetic simulation for determining possible scenarios for the land owners concerning the marron.
MANUSCRIPT 2: BACKGROUND, SCOPE, AND DECLARATION

Svatos and Abbott, (2019) was published in the Elsevier Journal “Dairy Science.” The publication seeks to clarify the highly complex nature of environmental data (dairy, agricultural soils) specific to the genetics of bacterial sequences, pasture plant species, and nitrogen, concerning the dairy farm and the dairy herd management practices, and policies. Using statistical software visualisation tools to show relationships; concerning ‘nitrogen hotspots,’ with minimal physical computing (CCA analysis), Svatos and Abbott, (2019) is part of an originally co-authored conference proceeding (Appendix 3). That used a novel visualization algorithm methods to simulate what happens in dairy pasture fields, through PCA and CCA instance creation and analyses of CPU:GPU kernel ratios (fastaq, FASTQ, Blast, NCBI, kPCA) (Svatos, 2011; Svatos, 2012). The bioinformatics assessments, including PCA and visualisations, however, were initially funded by Karl Corporation through the creation of personal Amazon EC2 accounts set up contractually for analyses for The University of Western Australia (UWA) as per Greenhalgh, (2002) Svatos, (2011), Svatos, (2012), and Svatos, (2018). The remainder of the research, including discussion and conclusion, was made possible by Murdoch University. Including the setup, installation and running of Linux instances (the Anaconda distribution and R packages used to develop the statistical outputs on a separate Amazon EC2 cloud console) as per the aims. These contributions were not acknowledged in Abbott et al., (2012) or Svatos and Abbott, (2019). As of April 2020, UWA has recognised these contributions (Dean of Science Prof. A. O’Donnell personal communication, 3rd March 2020). The following statement summarises the remainder of the published contributions.

“Karl Svatos and Lynette Abbott conceived the research at UWA (the parts that were funded by a ‘Dairy Australia’ UWA 13344 “High-resolution biotechnologies to assess urea-induced changes in dairy soil biological communities” which resulted in the generation of other publications and intellectual property related to the grant aims and objectives. Karl Svatos conceived the experimental design as per the research aims and objectives. The creation of instances used in the innovation, the data collection, and data analysis, production of the tables and figures, the writing of and submission of the manuscript (as per the submission guidelines, including supporting documentation, i.e. main findings and covering letter), and the handling of the peer review process (corresponding author responsibilities), was done by Karl Svatos and in some instances funded by Karl Svatos with personal financial help from Lynette Abbott, and by Murdoch University through the provision of a PhD scholarship.”

This statement is the view of Em. Prof. Lynette Abbott as witnessed by Professor Michael Jones as per the thesis declaration (circa 2020). The manuscript has not been altered from its published American form owing to the American Dairy Science Association Journal rules and regulations (except for the text formatting as it relates to the thesis).
Dairy soil bacterial responses to nitrogen application in simulated Italian ryegrass and white clover pasture

Karl B. W. Svatos1,2,3* and Lynette K. Abbott1
1UWA School of Agriculture and Environment, The University of Western Australia, Perth 6000, Western Australia, Australia
2School of Veterinary and Life Sciences, Murdoch University, Murdoch 6150, Western Australia, Australia
3Agriculture and Food Division, Department of Primary Industries and Regional Development, South Perth 6151, Western Australia, Australia

ABSTRACT

Through clearing and use of fertilizer and legumes, areas of southwestern Australia’s unique coastal sand plains can support relatively low-cost dairies. However, the ancient, highly weathered nature of the soils in this region makes the dairies susceptible to a range of threats, including nutrient leaching and erosion. Despite this, Western Australian dairy cows typically produce up to 5,500 L of milk per head annually supported by inorganic nitrogen (N) fertilizer (commonly 50:50 urea and ammonium sulfate) at rates up to <320 kg of N/ha per year. Where hotspots exist (up to 2,000 kg of N/ha per year), total N exceeds pasture requirements. We investigated plant and soil bacteria responses to N fertilizer rates consistent with Australian legislated production practices on dairy farms for pure and mixed swards of white clover (Trifolium repens) and Italian ryegrass (Lolium multiflorum) in a long-term pasture experiment in controlled glasshouse conditions. Although the soil bacterial community structure at phylum level was similar for white clover and Italian ryegrass, relative abundances of specific subgroups of bacteria differed among plant species according to the N fertilizer regimen. Marked increases in relative abundance of some bacterial phyla and subphyla indicated potential inhibition of N cycling, especially for N hotspots in soil. Ammonium concentration in soil was less correlated with dominance of some N-cycling bacterial phyla than was nitrate concentration. Changes in bacterial community structure related to altered nutrient cycling highlight the potential for considering this area of research in policy assessment frameworks related to nutrient loads in dairy soils, especially for N.

Keywords: nitrogen management, dairy pasture production, soil bacteria, clover, ryegrass

INTRODUCTION

Nutrient use efficiency, especially for nitrogen (N), is facilitated by maximizing beneficial microbial processes in dairy soil leading to less nutrient leaching and runoff, lower costs, and
better outcomes for farmers (Bolland and Guthridge, 2007b; Chen et al., 2018; Erisman et al., 2018). Australia’s ecological sustainability legislation under which the dairy industry operates is outlined in Australia’s Environment Protection and Biodiversity Conservation Act (Government Act, 1999). This legislation does not include the effects of microbial interactions associated with nutrient loads from the perspective of whole-ecosystem life cycle or environmental fate (Hemond and Fenchner-Levy, 1999; Svatos, 2018). Reports on soil quality, including N cycling, from New Zealand, the European Union, the United Kingdom, and the United States suggest that Australia’s national sustainability legislation may need review in the light of new research linking production practices to microbial interactions in soil management with outcomes for ecosystems and primary producers (Anseeuw et al., 2012; Erisman et al., 2018). However, this area of research is significantly underrepresented in assessment frameworks and policy discussions, yet shows great potential (Bünemann et al., 2018). The presence of legumes in dairy pastures can improve N use efficiency (van Eekeren et al., 2009; Lüscher et al., 2014) but excessive use of N fertilizer aimed at maximizing biomass for production gain is common practice in some places (Acosta-Martínez et al., 2010; Chapman et al., 2014; McDowell, 2017). The addition of high rates of N fertilizer to dairy pastures has potential to significantly reduce the effectiveness of soil microbial processes associated with efficient nutrient cycling, which may lead to overdose fertilization and downstream effects (Wepking et al., 2017; Duan et al., 2019). This may occur where excessive N accumulates and forms hotspots (e.g., urine patches), with total N entering ecosystems of up to 2,000 kg/ha per year (Cameron et al., 2013; Chadwick et al., 2018).

Plant species composition can influence functional patterns of bacterial biodiversity in grassland soils (Leff et al., 2015). There may be benefits for pasture soil management specific to pasture plant species and associated bacterial groups e.g., N fixation facilitated by bacteria within Proteobacteria (Pham et al., 2017; Wall et al., 2019). Dominance or subdominance of particular groups of soil bacteria and their functions are now being categorized quantitatively via “omics” technologies. However, their role in soils cannot be determined by merely considering the dynamics and statistical significance of common gene database sequences or bacterial species due to multilayered biological evolutionary selection (Rosselli et al., 2016; Schöler et al., 2017; Denef, 2018). For microbiota inhabiting rhizospheres, selection acts simultaneously on genes, individuals, cells, groups, and the holobiont (the plant host with its extended microbiome (Garcia and Kao-Kniffin et al., 2018)). It is essential to minimize bias surrounding extrapolation (the typical approach in species-specific gene functional analysis) and focus on increasing data reliability (Alberdi et al., 2017). By limiting assessments to analyses with a proven, classical, empirical basis, (e.g., N
fixation; (Tsoy et al., 2016) and by limiting functional prediction to already-characterized groups within traditional physiological classes in combination with long-term experiments, extrapolations can almost be eliminated (Contosta et al., 2015; Schloter et al., 2017; Damaso et al., 2018). We expected that persistent application of N fertilizer on the soil bacteria under swards of white clover (Trifolium repens) and Italian ryegrass (Lolium multiflorum) (Van Dorland et al., 2007) grown in simulated glasshouse conditions would show changes in bacterial community structure related to altered nutrient cycling (Kasparovska et al., 2016; Melchior and Myer, 2018).

MATERIALS AND METHODS

This study examined the effect of N and pasture plant species on soil bacterial diversity and relative abundance at the end of a long-term (8 mo) pasture sward experiment set up in a controlled (20°C) glasshouse at The University of Western Australia (UWA). We selected soil for this study from a dairy farm located in Cowaramup, Western Australia (33°50′35.5″S, 115°11′38.0″E) as part of a collaboration between Dairy Australia, UWA, and the Department of Primary Industries and Regional Development (McArthur, 2004; Dairy Australia, 2012). The soil collection methodology was consistent with the spatial sampling principles of Manter et al., (2010). We sampled the soil from the top 10 cm of the profile and transported it to UWA (at 0°C) on the same day, and potted it on the next day. Before potting, the soil was screened, thoroughly sieved over a 5-mm fraction, and mixed to minimize bacterial spatial microclimate effects or bias and to ensure maximum achievable replication for all treatments. Soil bulk density was also determined (King, 1981; Bruand and Gilkes, 2002), as was the ratio of water to soil for watering up to (but not over) approximately 60% field capacity. The soil was placed in 10-cm plastic-lined pots, and the surface was covered with plastic beads to minimize moisture loss (0.6 kg of soil/pot).

There were 3 N treatments, and each was calculated for elemental N using yearly known farmer application rates supplied to the Department of Primary Industries and Regional Development and Dairy Australia specific for dairy district practice and for the highest rate to simulate “hotspot” urine-like effects (Cameron et al., 2013). The 3 treatments were 0, 180, and 912 kg of N/ha per year. The total amount received for each pot was the equivalent dose per week, calculated on daily doses of 0, 0.5, and 2.5 kg of N/ha per day for the 0, 180, and 912 kg of N/ha per year treatments, respectively. The inorganic N fertilizer consisted of a 50:50 mix of urea and ammonium sulfate dissolved in aqueous solution. Nitrogen was applied weekly (in aliquots) and adjusted with additional water during the same fertilization event to maintain pots at approximately 60% field capacity. The pasture species treatments were (1) Italian ryegrass (Lolium multiflorum), (2) white clover (Trifolium repens), and (3) Italian ryegrass and white clover sown at 50:50 (30 plants per pot; Moorby et al.,
There were 3 replicates of each treatment and 2 cycles of plant growth consisting of 2 generations of pasture plants grown to full maturity and harvested at the height of 1 cm above the soil level (harvested shoots were removed). After the first harvest, the original seed stock seeds were resown into the same soil profile at the same seeding rate without significant soil disturbance after a few weeks. Fertilizer treatments were maintained throughout the 2 cycles. No fertilizer was added between growth cycles. At the final harvest (after 2 × 4-mo periods of continual growth), soil cores (1 cm2) from the top 0 to 5 cm of each pot were taken and placed in separate vials and stored in a freezer (-20°C) for wet molecular chemistry, downstream sequencing, and bioinformatics.

At second harvest, shoots were harvested and dried, and the biomass was determined (shoot dry weight). Soil was oven-dried and analyzed by CSBP Laboratories in Bibra Lake, Western Australia, for (1) Colwell phosphorus (mg/kg) and Colwell potassium (mg/kg; methods 9B and 18A1, respectively; Rayment and Lyons, 2011), (2) KCl 40 sulfur (mg/kg; method 10D1, Rayment and Lyons, 2011), (3) organic carbon (%; method 6A1, Rayment and Lyons, 2011), (4) nitrate N (mg/kg) and ammonium N (mg/kg; method 7C2b, Rayment and Lyons, 2011), (5) electrical conductivity (dS/m; method 3A1, Rayment and Lyons, 2011), and (6) pH (H2O; method 4A1, Rayment and Lyons, 2011).

Genomic DNA was isolated from sample vials using the PowerSoil DNA Total Isolation Kit (Mobio Laboratories Inc., Solana Beach, CA). We optimized the manufacturer’s protocol for our soil samples by using a bead-beating lysis procedure and by adding 200-μm diameter microbeads (0.2 g) to each sample vial (Abbott et al., 2012). The DNA extract quality and quantity were checked using a Nanodrop 1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA). Ribosomal 16S rRNA amplicons were generated via PCR (Suzuki and Giovannoni, 1996; Vestergaard et al., 2017), and the resultant PCR products were then prepared for sequencing and analysis (Klindworth et al., 2013; Vestergaard et al., 2017). Sequencing was performed using an Ion PGM OT 200 semiconductor (Thermo Fisher Scientific). Briefly, within R (Lucent Technologies, Murray Hill, NJ) packages and implemented through the Anaconda distribution (Anaconda, Austin, TX), (https://github.com/joey711/phyloseq), and biocLite (http://bioconductor.org/bioclite.r; Bioconductor, (Huber, 2015), FastQ files were checked for accuracy against the latest available benchmark standards (mid-2018 release).

For this process, we used Windows OS (Microsoft Corp., Redmond, WA) running Ubuntu 14.04 LTS (Canonical Ltd., London, UK) through a Virtual Box (Oracle Corporation, Redwood Shores, CA) virtual machine within a Python 3.6.5 reconfigured QIIME pipeline (Caporaso et al., 2010). FastQ files were then separately checked for low-quality reads before dereplication, annotation, and phylogenetic identification (Meyer et al., 2008; Lallias et al., 2015; Jovel et al., 2016).
The phyla representing nonclassical taxonomic groups or less than 1% of the entire sample size were also removed, and the final taxonomic data sets were compiled (Abbott et al., 2012). Data sets were analyzed as follows. First, a range of statistical ANOVA correlations were performed in GenStat (VSN International Ltd., Hemel Hempstead, UK) for significance based on the least significant differences (LSD). This included each N treatment and plant combination (shoot and soil data). Next, relationships between bacterial quantitative data sets with regard to the hypotheses, community diversity and relative abundance and soil data (eigenvectors) were assessed using canonical correspondence analysis in Microsoft Excel add-in XLSTAT ADA (Addinsoft, Paris, France). Then, pie chart representations were made for major taxonomic phyla across plant associations and N treatments. Next, histograms were made representing significant expanded phylum (class, order, and family) versus plant associations and N treatments. Finally, an assessment was then made in relation to all (Lindgreen et al., 2016; Alberdi et al., 2017; Denef, 2018; Schloter et al., 2017).

RESULTS

EFFECTS OF N TREATMENTS ON PASTURE PLANT SPECIES (WHITE CLOVER AND ITALIAN RYEGRASS)

Application of N to the plant swards increased \(P < 0.001 \) shoot growth for both white clover and Italian ryegrass when grown alone. The highest level of N application influenced the ratio of white clover to Italian ryegrass in the mixed sward (Table 4). When the equivalent of 180 kg of N/ha per year was applied, the ratio of white clover to Italian ryegrass was reduced from 0.16 to 0.08 due to an increase in biomass of Italian ryegrass, but there was no change in white clover biomass compared with 0 kg of N/ha per year (Table 4).

<table>
<thead>
<tr>
<th>Table 4: Dry weight shoot biomass (g/pot) of white clover and Italian ryegrass and soil ammonium (mg of N/kg of soil; (n = 3 \pm SE)) when grown in dairy soil for 4 mo with 1 control rate and 2 N treatment rates (0, 180, and 912 kg of N/ha per year) relative to the already-prevailing N soil concentrations, plus 5% least significant differences (LSD) for plant growth.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Italian ryegrass</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>White clover</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Italian ryegrass + white clover</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>5% LSD</td>
</tr>
</tbody>
</table>
When 912 kg of N/ha per year was applied, white clover was completely outcompeted by Italian ryegrass (Table 4). Soil ammonium was higher under white clover than under Italian ryegrass (Table 4). Nitrate was very low in the soil for all treatments (2 mg/kg of soil). Analysis of variance of soil data indicated that the application of N was highly significant \((P < 0.001)\) in its effects on ammonium (LSD = 4.49 mg/kg), sulfur (LSD = 12.2 mg/kg), potassium (LSD = 18.8 mg/kg), and pH (water; LSD = 0.16; Figure 13).

EFFECTS OF N APPLICATION AND PASTURE PLANT SPECIES ON DOMINANT SOIL BACTERIAL PHYLA AND PHYSIOLOGICALLY SIGNIFICANT SUBGROUPS (ORDER AND FAMILY)

Italian ryegrass grown alone with the highest N application supported an increase in the relative abundance of *Proteobacteria* (Figure 14) and α-
Proteobacteria (Figure 15) and a slight decrease in the relative abundance of Acidobacteria, whereas the relative abundance of Actinobacteria and Firmicutes remained largely unaffected (Figure 14). For white clover grown alone with the highest N application, there was a decrease in the relative abundance of Proteobacteria and increases in the relative abundance of Firmicutes, Acidobacteria, and Actinobacteria (Figure 14). In soil from the mixed ryegrass and clover pasture sward, the relative abundance of Proteobacteria and Acidobacteria decreased slightly, whereas that of Actinobacteria and Firmicutes increased slightly with increasing N application. The effects of N application and plant sward composition were minimal on bacterial groups that were recorded in the soil at low relative abundance. Within Proteobacteria, application of N increased the relative abundance of Caulobacterales when white clover was grown alone, and the relative abundance of Rhizobiales decreased (Figure 15). Within Firmicutes, N application to white clover
reduced the relative abundance of some families of Bacillales and increased the relative abundance of Clostridiales (Figure 16). Furthermore, there was an increase in the relative abundance of families Veillonellaceae and Peptococcaceae with N application when white clover was grown alone (Figure 16).

DISCUSSION
For white clover and Italian ryegrass grown either alone or in combination on dairy farms, 50:50 urea and ammonium sulfate application in accordance with industry standards and legislation is likely to have a marked effect on soil bacterial communities related to nutrient uptake by plants in addition to overall plant biomass effects when N exceeds 180 kg of N/ha per year (Iannetta et al., 2016). Recent studies that highlight some of the bacteria effects on soil and plants in a similar N concentration range include Wepking et al., (2017), and Duan et al., (2019). We also expect that the bacterial community changes are associated with N cycling changes; however, because quantifying N cycling and N cycling efficiency is not as simple as

![Figure 15: Diversity and relative abundance within phylum Proteobacteria in response to 3 nitrogen (N) treatments (0, 180, and 912 kg of N/ha per year for zero, low, and high, respectively) and 3 plant treatments [Italian ryegrass (rye), white clover (clover), and the combination of Italian ryegrass and white clover (clover + rye)]. The phyla displayed correspond to the colors shown on the right side of the chart. The order in which the phyla appear for the treatments is consistent.](image-url)
assessing N required for pasture plant biomass yield (Holly et al., 2018), many of the microbiological responses occurring in these production environments are often overlooked. However, they remain highly beneficial sources for improved management (Bünemann et al., 2018). In this experiment, the concentration of ammonium under white clover was more significant in its effect on soil bacteria than nitrate (ammonia was less correlated than nitrate) based on eigenvector canonical correspondence analyses (Figure 13), which is consistent with the observations of Di et al., (2010), Chapman et al., (2014), and Sun et al., (2018). When N fertilizer was applied to clover grown alone, there was an increase in Rhizobiales (α-Proteobacteria) and Clostridia (Firmicutes) (Minamisawa et al., 2004; Che et al., 2018). A dominance of alpha versus beta and gamma classes of Proteobacteria indicates oligotrophic soil conditions (İnceoğlu et al., 2011; Morrison et al., 2017) synonymous with N-limited environments (Senechkin et al., 2010; Ren et al., 2016). Because Rhizobiales was the most dominant order present across all treatments, it needs to be mentioned that the importance of their presence is consistently underrepresented in linking soil quality to soil function and ecosystem services (although not measured for functionality.

Figure 16: Diversity and relative abundance within phylum Firmicutes in response to 3 nitrogen (N) treatments (0, 180, and 912 kg of N/ha per year for zero, low, and high, respectively) and 3 plant treatments [Italian ryegrass (rye), white clover (clover), and the combination of Italian ryegrass and white clover (clover + rye)]. The phyla displayed correspond to the colors shown on the right side of the chart. The order in which the phyla appear for the treatments is consistent.
in our experiment) (Albright et al., 2019; Wall et al., 201).
There was a marked influence of the higher N application on pasture composition for white clover and Italian ryegrass grown together. Clover may mitigate production loss under increased stocking rate in sandy soils where constant N concentrations range from 180 up to (the maximum legislated) 320 kg of N/ha per year. Application rates above this range might trade off beneficial soil processes (especially around N hotspots) due to the inability of clover to compete with ryegrass (Kasparovska et al., 2016; Melchior and Myer, 2018). Interactions between N fertilizer, plant genotype, and soil bacterial community structure contribute to the effects of N on soil bacterial communities rather than N fertilizer alone.

The increase in the relative abundance of the *Caulobacterales* (within the β-Proteobacteria) with N application for white clover grown alone but not in combination with Italian ryegrass or Italian ryegrass alone corroborates a previous hypothesis that *Caulobacterales* may dominate N-fixing environments associated with clover (Zahran, 1999; Revell et al., 2012; McDowell, 2017). The ability of bacteria within *Caulobacterales* to regulate and transcribe orthologs (through speciation) to associate with N fixation processes is an essential consideration for dairy soils, especially for efficient use of N (including N fixation), as it may include previously unidentified biological pathways and needs investigation (Negreanu et al., 2012; Tsoy et al., 2016; Bünemann et al., 2018).

Bacteria in the order *Clostridiales* have an essential role in N cycling (Heller, 1921; Wiegel, 2005). The relative abundance of *Firmicutes* was largely unaffected across all N and plant treatments except within the order *Clostridiales*. Increases in the relative abundance of *Veillonellaceae* and *Peptococcaceae* after N application to white clover raise the possibility of resistance to acidified soil environments. The link between the increasing negative correlation between N and soil pH variation and the correlation between the presence of *Firmicutes* and organic carbon and pH supports this assumption (Figure 13). *Veillonellaceae* decreased again, indicating a buffering capacity threshold for N applied at a rate of 180 kg of N/ha per year < X < 320 kg of N/ha per year (Bolland and Guthridge, 2007a; Dairy Australia, 2012; Chadwick et al., 2018).

CONCLUSIONS

Nitrogen fertilizer applied at current levels to dairy pastures can alter the structure of soil bacterial communities as well as pasture plant dominance. We showed a marked effect of weekly applications of N fertilizer on the relative abundance of soil bacteria for swards of white clover (*Trifolium repens*) and Italian ryegrass (*Lolium multiflorum*) in a long-term glasshouse experiment. There is evidence to support our hypothesis that sustained and elevated N application alters the dominance of N cycling bacteria in this dairy soil, with potential for reduced N use efficiency, which could lead to
increased prevalence of oligotrophic soil conditions (İnceoğlu et al., 2011; Morrison et al., 2017). Nitrogen applied to this dairy soil affected bacterial communities associated with two pasture plant species in a variety of ways (Geschwendtner et al., 2014). Characterization of bacteria from the orders *Rhizobiales* and *Clostridia*, within the α-*Proteobacteria* and *Firmicutes*, respectively, may provide a litmus test for oligotrophic soil conditions in environments of poor nutrient binding (Ren et al., 2016; Tsoy et al., 2016). Further understanding of how N fertilizer use influences the functional aspects of bacterial communities associated with N cycling in dairy soils could assist in the development of better sustainability policies related to N application that takes into account group-level concepts of the soil microbiome and surrounding holobiont to minimize related risk.

ACKNOWLEDGEMENTS

We acknowledge the contribution of the following people and industry groups. Dairy Australia (Southbank, Victoria) funded this research in collaboration with the University of Western Australia (Crawley, Western Australia). The Department of Primary Industry and Regional Development in Western Australia (previously Department of Agriculture and Food Western Australia, South Perth, Western Australia) provided logistical support. Zakaria Solaiman, Ian Waite, Richard Alcock, Sasha Jenkins, Michael Smirk, and Darryl Roberts (the University of Western Australia), Jim Cook (University of California, Davis), and Kim Angus (https://www.facebook.com/ConsultKimToodyay, PO Box 379, Toodyay, Western Australia), provided valuable advice and editorial support during this study.
NEW RESEARCH AND RELEVANCY CLARIFICATION TO MAIN AIMS AND HYPOTHESIS

Use of visualisation algorithms and mathematical kernelisation in Svatos, (2011), Svatos, (2012), Svatos, (2018), and Svatos and Abbott, (2019) (demonstrated in the statistical programming methods as outlined in Appendix 3 preamble) show and support the case for ethical assessments of holobiont interactions and environmental fate in policy frameworks for managing dairy farms via digital twins; including through the use of automation software, environmental sensors and epigenetic techniques (Appendix 1, 2, and 3). Due to the highly intricate relationship dairy cows, and in particular, the rumen affects milk through diet, but more importantly through soil microbes (Andrews et al., 2011; Lawrence et al., 2016; Schloter et al., 2017).

Figure 17: A typical Western Australian dairy with healthy young animals. This type of rural setting would provide an excellent test case for digital twin automation simulation, due to the remote location with varying internet connectivity and the relative abundance of varying landscape features under management protocols, but also due the great knowledge and care the farmers have for the ethical treatment of their animals including the genetic lineages (Em. Prof. J. Edwards personal communication, 3rd September 2019). Image Credit: The Author, circa 2011.

Epigenome-wide association studies may offer the best outcome in improving ethical issues for dairy farm cattle (Triantaphyllopoulos et al., 2016), however, at the time of study short-read sequences and horizontal gene transfer studies were not possible due to the technological limitations of the sequencing technology available at that time. As such, an ethical case for measuring horizontal gene transfer in bacterial communities was proposed for the PacBio SEQUEL system in 2019 (Appendix 1). Briefly, the proposal highlights the dynamic nature of soils and more recently, relationships concerning bacterial function, horizontal gene transfer and epigenetics from animal welfare and meat quality perspectives, which are recently explored in detail by (Greenlon et al., 2019), with previously underreported deeper links to Jones, (1985).
A proposal to join Davis University to participate in collaborative experiments was approved in 2019; however, due to the COVID-19 pandemic, Davis cancelled (Prof. D. Cook personal communication, 5th May 2020). Although proposed, these could not be implemented. However, the data and DNA collected still presents an opportunity for future studies concerning digital twins and dairying at the bacterial epigenetic level, (now with the new PacBio SEQUEL II system available through the Kazusa DNA Research Institute, Chiba Japan). More support is needed (Figure 17) not from local communities concerning animal husbandry and animal welfare issues, or from farmers for that matter, but from research committees who steer research funding.

Research leaders on animal welfare, and ethics approval committees, who value traditional DNA-based techniques or less costly approaches over frontier based technological and statistical methods (e.g. those that offer simple, secure satellite tracking, IoT, or edge-based computation and virtualization, e.g. (Oracle, 2020) over a newer type of mixed biotech agtech approach) need better steering. On the ethics of using such technologies for ethical assessments of A.I. for species outcomes, the methods presented here would favour the health of dairy cattle, (potentially over the surrounding environment), and validate the hypothesis. However, not conclusively (Figure 18).

Figure 18: The South Western Australian Mediterranean climate represented in this map, is located along the coastline of the Indian Ocean. The primary area of focus in relation to several proposed SMRT EWAS studies indicated in the study sites listed here. Which were also part of the dairy study (Svatos 2011), Svatos (2012), Abbott et al., 2012. The Mediterranean climate, however is much larger than that shown on this map, whereas the average rainfall for ‘textbook’ Mediterranean climates tend to hug the coastline (Swan Coastal Plane) as the grid increases North. The one distinctive feature of this map is the still intact waterways with closed rivermouths and possible shallow turbidite profile remnants extending out as far as the northwestern continental shelf (Svatos, 2018). Image Source: The Free Software Foundation (1991) via Google Maps- Map Data Science 2010 (edited by the author).
MANUSCRIPT 3: BACKGROUND, SCOPE, AND DECLARATIONS

Manuscript three “Big-data GPU/CPU kernalisation pipeline for API based quantitative genetic assessments in field-based drone research,” is the penultimate research output derived from Svatos, (2018) and Svatos and Abbott, (2019) in the context of the general aims to collect the data required, to substantially test the hypothesis (please see Appendix 4 for context).

This manuscript abstract is standalone. The author presented this abstract in Osaka, Japan, to showcase the breakaway research, in 2018 (at an international conference). At that time, the focus for the manuscript was on the genetics of barley grain yield and abiotic stress and is a focal point of this chapters literature review. This review bridges the gaps of manuscript’s one and two with the central thesis review; i.e. big-data science, abiotic and climate-related environmental issues, but also includes a more significant genetics component about the relationship between grain yield abiotic stress. Owing to the strategic nature of this research (general methods) concerning the collaborators’ interests; the focus shifted. A request for comment was made to the principal supervisor in July 2020, concerning critical Katanning grain yield data, and the whereabouts of an entire doubled haploid population consisting of ~420 lines that were selected and re-bred by the author (a minimum of two years data are generally required for field trial publications; DH lines constitute original varieties). No response was ever given. The best possible outcome was always sought by the author. The only realistic solution was to change principle supervisors. Sadly, labelled germplasm (Tibetan-Australian barley) assigned to the author for research purposes related to the central tenet of the manuscript, was taken away without the supervisory team’s knowledge or consent. The manuscript was subsequently split into two separate works.
Serendipitously, the split led to new opportunities that enabled the aims and hypothesis of the thesis to be realised (as initially intended). With a new focus, the research expanded. Drone research, high-resolution imagery and photogrammetry, GxE sensors, telematics, telecommunications, and encryption software development became possible. The minimum requirements for an A.I. digital twin ethical assessment (as per the aims) became possible. The industry collaboration projects that were formed continue today. These projects have generated industry-linked PhD scholarships and significant scientific outputs (Appendix 5, 6, and 7). Due to the circumstances that are outlined in this declaration, further research was sought through an internship, which rebuts the potential for any perceived lack of seasonal variation data, that historically has been considered, “a pre-requisite for agricultural PhD dissertations and publications by Western Australian and Australian agricultural institutions” (Anonymous UWA Agriculture Student personal communication, 19th September 2003) (Manuscript 4).

The establishment and participation in these projects occurred while studying at Murdoch University, and through additional individual/private efforts of the author. As such, some of the IP developed is confidential and has been withheld in this manuscript, including (names, addresses, GPS coordinates, certificates and hexadecimal hash key information) for privacy and security reasons. The author considers that all parties have significantly benefited from the generation of original intellectual property; however, some of this IP is the property of the author. Concerning all intellectual property generated concerning the general aims and hypothesis of this manuscript, the following statement has been endorsed by Prof. Chengd 새로운 라인더 Li (former principal supervisor and WCGA director), Dr. Dean Diepeveen (DPIRD), and Em. Prof. Lynette Abbott (UWA), and witnessed Prof. Michael Jones. Individual collaboration declarations of acknowledgements are given thereafter, including a privacy and confidentiality statement.

“Karl Svatos conceived and managed the entirety of this research with minimal supervision, including: i.) the theoretical framework for the data acquisition via drones, ii.) the concept for a method of data analysis, iii.) the data analysis. The research was jointly funded by DPIRD and by Murdoch University through the provision of a Western Crop Genetics Alliance Scholarship.”

Manuscript three stands alone and should be considered as one whole chapter for the purpose of the thesis (concerning the aims and hypothesis). However, these projects constitute separate works with separated aims due to the intellectual property concerning Tibetan barley.
Project one: “Rapid downstream glasshouse field trial genetics assessments for QTL variability minimisation in GPU core processing and telematics data analyses” is the result of a collaboration in 2018 between Murdoch University, DPIRD, Scientific Aerospace, the WBGA, the author, and Karl Corporation. The research significantly aided (i) the development of a cloud-based data lake for realtime statistical A.I. assessments (the first on a barley DH), (ii) the publication of a white paper, focussing on abiotic stress, and (iii) the breeding of two new varieties ‘Black Beard’ and ‘White Gold’ currently held at Murdoch University and Department of Primary Industries and Regional Development (DPIRD) respectively (for which the author claims a right to commercialise). On the grounds of ‘a priori’ (Figure 3).

The Grains Research and Development Corporation (GRDC) partly funded this project: MU00049 (Heat Stress) which included access to the unique Hindmarsh W1 Australian-Tibetan (HW1) germplasm. The HW1 DH population was bred by Lee-Anne McFwan from DPIRD who is also a member of the Western Crop Genetics Alliance, who administer the GRDC barley projects from Murdoch University. Additional funding was provided by DPIRD (use of glasshouses for x3 years), (access to field sites for x3 years), access to light-heavy machinery, instruments and tools, imaging devices, software, and occasional use of casual staff for the five years (Dec 2015- July 2020). The project was wholly managed by the author as a volunteer DPIRD researcher (5 years) and as a student at Murdoch University (4 years).

Murdoch University provided additional support which was used for access to vehicles, laboratory bench space, a computer, email accounts, and software, for example, VPN access to the edu.roam server, Microsoft Office 365, Windows 10, endnote etc. Including AWS instances, additional use of specific custom ROMs and recoveries, the setup, and installation of such on said devices, primarily for telemetry and use in Australia and foreign countries, for the ethical modifications of the system OS via APIs, including publically owned DPIRD weather station data (APIs 9DB3E3070BFF19CD2D8A283A and 6BFBF31EFC1239CDF121560C), these were all performed by the author under the contracts listed above or while privately consulting for (formerly Scientific Aerospace under supervision trading as Karl Corporation). This included through the use of personal and supplied email accounts, and SSH (*.ppk 256 SHA hash) protocol for security and privacy.
The following declaration endorsed by Geoff Trowbridge (Retired) summarises the project-specific aims concerning the data used. Concerning drone flight telemetry data, this statement does not include a reference to this data; it was never provided. Scientific Aerospace no longer trade commercially. Remsense were contacted in an attempt to gather this data (which was required to complete the ground-truthing accuracy calculations for the initially proposed real-time genetics GWAS analysis). Telemetry is needed to convert the thermal, NDVI, and RGB into GPS location for plot specific correlations, (based on grain yield DH lines), for prediction algorithms to work. Their current spokesperson said: “I doubt any such technical data was maintained with Sci Aero wind-down of activity on Ag sector interests.” It may also have been deleted. Had the data been provided with the challenge to complete the GWAS based on all the circumstances (listed here), including withheld Katanning grain yield data meant that such calculations were not achievable in four years as planned.

“The white paper article was prepared, researched, and written by Karl Svatos with clear guidance and under the supervision of Geoffrey Trowbridge (formerly CEO of ScieAero), and the rest of the team at SciAero. The central theme of the use of drones and drone technologies to combat a range of abiotic and biotic stress and other agricultural challenges remains the vision of both authors. However, for the purpose of this thesis only, because the trials were used as part of an experiment on Western Australian (Government) owned land, (while enrolled full time at Murdoch University), the data collected by SciAero in this one exercise described in this article, are that of Karl Svatos and may be used for the thesis.”
Project two: “Scaleable, private LTE/4G, Boolean GPU networking for automated, remote, IoT decision making,” is the second research collaboration project as part of manuscript three. A collaboration was formed between Murdoch University, DPIRD, Pivotel, Nokia-Bell Australia (trading under Microsoft), and Precision Agronomics. The collaboration focussed on abiotic stress for agtech data science-driven research outputs. Additional application and hardware development for IoT, telecommunications, security and signalling protocols have been generated since the results presented here and data acquired were set up and arranged by the collaborators, including the author independently. Including the creation of and management of AWS instances as part of contracts generated through additional private consulting addressed in manuscripts one and two (Karl Corporation). The following statement summarises the research output presented in this manuscript and has been endorsed by the parties named therein (through a confidential source). The author has no commercial interest in the abiotic stress IP only the automation software, which was developed by the author independently.

“The collaboration project; ‘Scaleable, private LTE/4G, Boolean GPU networking for automated, remote, abiotic stress, IoT decision making,’ between Murdoch University, DPIRD, Pivotel Satellite, Nokia-Bell Labs, and Precision agronomics, was established under the Nokia FutureX program initially by leadership efforts of Karl Svatos acting in various capacities (as student and entrepreneur), including the receipt of a Murdoch University Scholarship. Including part of its collaborative outcomes, unless otherwise acknowledged herein. Karl Svatos conceived the research concept of the project, developed the methods for data collection, coordinated the deployment of, and use of data analysis software and tools for data collection and analyses specific to abiotic stress, and managed the project from the ground up to the AWS cloud including the budget, and security protocols.”
PRIVACY AND CONFIDENTIALITY STATEMENT

Some of the research outputs are confidential due to the intellectual property that is currently being developed as a result of these research projects. However, because this thesis is about the ethics of the digitalisation of species’ data for A.I. decision making and management purposes, data and germplasm (both the source and destination) cannot wholly be withheld from scrutiny.

That said, where additional authors and collaborators of the publications in this manuscript are mentioned, great care has been taken to ensure the correct procedures have been followed concerning publishing guidelines, especially surrounding acknowledgement, the intellectual property generated; ownership of data; environmental (weather station), phenotype, genotype or otherwise, including DNA and germplasm sources, concerning individuals rights to privacy concerning research ethics.

As such, unless otherwise acknowledged elsewhere in this manuscript or the thesis, the research in this manuscript was entirely conceived, developed, directed and managed by the author with additional operational support provided only from the abovementioned collaborating parties, and individuals acknowledged including students. Some of whom may wish to remain anonymous*.
BIG-DATA GPU/CPU KERNALISATION PIPELINE FOR API BASED QUANTITATIVE GENETIC ASSESSMENTS IN FIELD-BASED DRONE RESEARCH

Karl BW Svatos 1, Dean Diepeveen 1-3, Lynette K Abbott 4, Chengdao Li 1

1 School of Veterinary and Life Sciences, Murdoch University, Murdoch, W.A., Australia
2 Faculty of Science and Engineering, Curtin University of Technology, Bentley, W.A., Australia
3 Western Australian Department of Primary Industries and Regional Development, South Perth W.A., Australia
4 UWA School of Agriculture and Environment, The University of Western Australia, Crawley W.A., Australia

ABSTRACT

The transition away from legacy BIOS firmware architectures provides an opportunity to increase the accuracy of large genomics platforms through advanced chipsets integrated with custom-built 4G/LTE broadcast base-stations that currently enable high-speed data compression in remote locations. How these devices integrate phenotype data for the selection of traits with respect to environmental variation in field trials requires efficient data capture, storage and real-time GPU virtualisation of all connected devices. We propose a method utilizing autonomous drones with precision instrumentation for pre-processing and offline data capture systems with pre-flashed custom ROMs for phenotypic measurement based on Markov chains and probability functions, making use of Gibb’s sampling. Environmental datasets such as topography maps, soil type, and climate data are cross-referenced to accurately and efficiently select genetically in the field via the onboard CPU/GPU cluster and cloud-based APIs (solid-state SSH super-computer CPU/GPU nuc SSH connection) through the kernel whilst online. Ultimately computation compression ratios, CPU and GPU facilitation of metascopic data clusters and embedded machine states, will determine much of the way forward in this space. However, the logistics required to “train” a drone via a neural network machine learning pipeline to assess genotype in the field accurately or, the management approach whether that be the desired outcome is now a reality. This research provides the preliminary pipeline using barley and yield, maturity, canopy-temperature, NDVI and stomata physiology as the plant characteristics to deliver a proof of concept poster (Appendix 4).
THE NEED FOR ENVIRONMENTAL AND AGRICULTURAL TECHNOLOGY FOR ABIOTIC HEAT, WATER SCARCITY, AND FROST IMPROVEMENT IN BARLEY CULTIVATION

Agricultural abiotic stress is the result of a period during the growing season where changes in an ecosystems’ (natural or disturbed) net equilibrium balance, at the soil-plant-atmospheric interface, affects the ability of a plant to produce a crop that can generate some form of perceived benefit to the landowner. It refers to circumstances when soil moisture is insufficient enough to result in increased crop growth and production, but more importantly relates to complex interactions between the soil moisture and air temperature effects (Zargar et al., 2011). The net osmotic gradient and water flux potential of that ecosystem result in changes to plant equilibrium state maintenance (Keyantash and Dracup, 2002; Mickelbart et al., 2015; Rey et al., 2016). Abiotic stress, including drought events, are associated with international issues, including food security and climate refugees as a consequence (Burrows and Kinney, 2016). None is currently higher or shocking than the mass movement of over 3 million people from Syria to Europe, as the result of a most severe drought in Syria destroying 1.5 million farming families’ livelihoods (Werrell and Femina, 2016).

Barley production in Australia differs from that of the Middle East, Africa or Eurasia. This difference is mainly regarding cultivation practices and technologies being post-industrial revolution (after the invention of nitrogen fertiliser and superphosphate and the out-breeding of genetic diversity in favour of yield-related traits). Australian cultivation further contrasts to Eurasian and Middle Eastern agriculture because the use of landrace barley’s is still evident and promoted in the latter (Nair, 2019). One thing in common, though, and that most of these climates experience, is abiotic stress. In Australia, for example, drought occurs mainly after anthesis (flowering). Cultivation in Australia began approximately 200-years ago and expanded rapidly more recently in Western Australia. The agricultural cropping region of Western Australia supports a large annual barley crop with typically long dry summers and reliable winter rainfall making production economically viable. In Western Australia planting of a successful crop must begin in winter and depends on Winter occurrence of ‘opening rains' breaking in April to early May, where frequent rainfall can continue through until the end of July (Allison and Hobbs, 2004). For winter cropping, harvest can usually begin by the end of October and continue through until January in areas with higher rainfall and includes seasonal increased frost and heat stress risk (Paynter et al., 2016).
The diversity of Australian barley cultivars that are unique to Australia is apparent both regarding the number of varieties commercially available and breeding programmes’ developing varieties. New top-performing commercial types include the malting grade Commander, a food-grade Hindmarsh and another feed grade called Compass. Each variety offers unique characteristics that enable harvest in Australian arid to semi-arid climates but more importantly also provide a range of different abiotic and biotic stress tolerances for specific cropping environments. Barley as an agricultural crop is diverse regarding (i) the number of usages, (ii) number of cultivation environments, and, (iii) its evolutionary age (both forms) (Langridge et al., 2011; Awasthi et al., 2015; Mascher et al., 2016). Increasing challenges are arising to develop new varieties under drying cropping environments by bridging inherent resilience from the barley species’ evolutionary age and domestication habit, which is particularly evident in areas where abiotic stress affects yield.

COMPLICATED GENETICS: A FAMILIAR STORY IN SYSTEMS BIOLOGY

Slow progress has been made in improving drought tolerance in cropping plants, or in developing tolerant cultivars in barley (Fan et al., 2015). They suggest that this is likely due to (i) the physiological and genetic (quantitative inheritance) complexity of tolerance traits, and (ii) high environmental variability and the low efficiency of selection methods. Evidence for associating genetic contribution to stress-related phenotypic traits including drought has proved elusive for the improvement of cultivar tolerance because, relatively few genes/QTLs controlling morphological and physiological adaptive traits have been cloned to date (Uga, 2010; Guerra et al., 2015). For crop improvement, it is necessary to determine the genetic basis of the agronomic trait (Diepeveen, 2011). GWAS (and more recently EWAS) is powerful techniques for detecting natural variation and fine mapping of QTL underlying a complex trait(s) (Chhapekar et al., 2016). GWAS requires a collection of individuals or a population of diverse genotypes and highly polymorphic markers that show genome-wide distribution, although it is not the only method of genetically exploiting barley germplasm in the biochemical sense concerning abiotic stress (Table 5).
Table 5: Studies completed in the field of barley cultivation and drought relevant to the analyses and the main scientific outcomes concerning the genetics of barley.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Analysis Conducted</th>
<th>Scientific Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeng et al., 2016</td>
<td>Transcriptome analysis revealed the drought-responsive genes in Tibetan hull-less barley.</td>
<td>853 differentially expressed genes. Two categorised groups out of 9 clusters up-regulated under low, relative soil moisture, content. All genes displayed different sensitivities to soil water deficit.</td>
</tr>
<tr>
<td>Yuan et al., 2015</td>
<td>Cloning and characterization of up-regulated HbSINA4 gene induced by drought stress in Tibetan hull-less barley.</td>
<td>Two categorized groups out of 9 clusters up-regulated under low, relative soil moisture, content. They suggest that all of the genes found, display different sensitivities to soil water deficit, which may be profitable for future drought tolerance in barley or other crops.</td>
</tr>
<tr>
<td>Wehner et al., 2016</td>
<td>Expression profiling of genes involved in drought stress, and leaf senescence in juvenile barley.</td>
<td>Two eQTL’s on chromosomes 3H and 5H for drought tolerance.</td>
</tr>
<tr>
<td>Robinson et al., 2016</td>
<td>Mapping seminal root traits of barley using a recently developed high-throughput phenotyping Method.</td>
<td>A major QTL influenced both root angle and root number positioned on chromosome 5H, determined in glasshouse pots. They suggest that the presence of this gene increases yield by up to 10% in Queensland cropping environments.</td>
</tr>
<tr>
<td>Obsa et al., 2016</td>
<td>QTL’s were mapped for phenotypes including early vigour, NDVI, leaf chlorophyll content (SPAD), leaf waxiness and leaf rolling in 3 DH barley populations in Australia via genotyping via sequencing and SNP.</td>
<td>The study found 13 maturity QTL of which eight collocated with phenology genes, and 18 QTL for traits associated with adaptation to drought-prone environments. The high-density linkage maps may aid in genetic studies for barley adaptation to Mediterranean-type environments.</td>
</tr>
<tr>
<td>Hasanuzzaman et al., 2016</td>
<td>Transpiration rate, quantum yield of PSII (chlorophyll fluorescence Fv/Fm ratio), SPAD chlorophyll meter reading, dry biomass and shoot water content was tested for drought tolerance genotyping ease</td>
<td>Chlorophyll fluorescence Fv/Fm ratio showed a strong correlation with drought tolerance tested via correlation to R². Chlorophyll content, dry biomass, shoot water content, and stomatal density did not correlate with plant drought tolerance tested via R². Screening time is a significant hindrance on data collection.</td>
</tr>
</tbody>
</table>
TRANSCRIPTION FACTORS ALONE DO NOT EXPLAIN ENVIRONMENTAL DATA VARIATION PATTERNS CONCERNING YIELD IN POPULATION STUDIES

A recent publication by Watt et al., (2020) suggests that harnessing the potential of transcription factors as potential tools for abiotic stress improvement is a matter of ‘identifying the complex role that transcription factors of multiple families have contributed toward abiotic stress tolerance.’ Unfortunately it is not so simple. A publication by Wang and Chekanova, (2016) on siRNA (small RNA’s) proposes that essential regulators of gene expression and defences against environmental stresses in plants (abiotic stress) are controlled at the transcriptional level by an intricate gene regulatory network, which is a view partially supported by Singh and Laxmi, (2015). Their belief is that transcription factors (TFs) are proteins that work together with other transcriptional regulators, including chromatin remodelling/modifying proteins that employ together; “simultaneously, to other transcriptional regulators or obstruct RNA polymerases on the DNA template.” All of these approaches indicate a more complex array, that have too many bioinformatics dependencies for computational mapping alone, which is why pangenome-omics strategies now dominate world-leading research groups, e.g. (Greenlon et al., 2019).

Transcription factors in response to drought and heat stress are grouped into two categories, abscisic acid (ABA)-independent pathways and ABA-dependent pathways (Kumar et al., 2015a). In Zeng et al., (2016), a total of 853 differentially expressed genes were detected and categorised. Some of the 853 genes were up-regulated under low relative soil moisture content. Abiotic stress genes included: (i) 9-cis-epoxycarotenoid dioxygenase (NCED), pyrabactin resistance 1/PYR1-related/regulatory component of ABA receptor (PYR/PYL/RCAR), sucrose-nonfermenting kinase1-related protein kinases (SnRK2), antibacterial factors (ABF), transcription factor MYC/MYB N-terminal (MYB/MYC), floral homeotic protein / ethylene-responsive element APETALA2/ERE, APETALA homeotic binding factor family (AP2/ERF), late embryogenesis abundant (LEA), and dehydrin (DHN). In roots, transcription factors (including some of the above-mentioned ABA signalling pathway transcription factor families) are: (i) dehydration response element-binding factors (DREB), (ii) AP2/ERF, (iii) NAC, (iv) basic leucine zipper (bZIP), (v) MYC, (vi) calmodulin-binding transcription activator (CAMTA), and (vii) alfin-like and q-type (ZFP) (Cramer et al., 2011; Pandey et al., 2015; Janiak et al., 2016). “Transcription factors may recognise and interact with specific cis-elements of target genes via DNA binding domains,” as described in Scharf et al., (2012) when
describing the heat stress transcription factor (Hsf) family about plant structure, function, and evolution.

He et al., (2015) suggest that Tibetan wild barley is a resource of genes for improving crop defences against abiotic stress tolerance, including drought. In this study, a transcriptome analysis of the novel β-expansin gene (HvEXPB7) revealed root hair growth under drought, in wild Tibetan barley which they concluded, “could be novel to this variety”. Because as Yang et al., (2016) asserts; “some TF’s can up-regulate or down-regulate downstream gene transcription, which encodes a subset of TF’s integrated into plant hormone signalling pathways, forming a complex hierarchic regulatory network”. ABA and jasmonic acid (JA) are two plant hormones that act as key regulators in balancing plant growth and abiotic stress response (Liu et al., 2015). TF’s function and act within these signal transduction pathways (Wei et al., 2014). However, a further layer of complexity exists. The hierarchy of TF interactions within downstream gene network(s) and the interaction mechanism of the signal transduction pathway(s), with protein dimerization relationships that are not entirely explored and, “need more research” (Yang et al., 2016). Drought tolerance of 47 Tibetan wild barley accessions was evaluated for drought tolerance using reduced soil-plant development analyses (SPAD). Based on chlorophyll meter readings, plant height, and biomass of shoot vs. root in plants exposed to drought stress were found to be associated with increased adaptation and higher yield (Zhang et al., 2014). The results from another study analysing 95 Tibetan Wild lines showed that Tibetan wild barley can yield higher grain protein content than cultivated barley and that two HvNAM genes proposed as candidate genes may control grain protein content (Ahmed et al., 2016).

Advances in genome-wide studies have contributed to the understanding of barley as a complex system (Jarzyniak and Jasinski, 2014), including plant responses to environmental stress (Bobadilla and Berr, 2016). Mediterranean, winter, rain cropping environments, often suffer drought at the end of the growing season (Fan et al., 2015). The magnitude of the threat which drought poses has made breeding for drought strategies a primary objective of current research groups worldwide (Wehner et al., 2016; Zhang and Li, 2016). Genetic variability reported in Engineer et al., (2016) suggests that using exotic landraces will play a primary role in determining positive adaptation to environmental stresses and extreme climatic conditions.
Figure 19: (Left) Rainfall percentiles and percentile rankings in Australia from 2000–2016 based on the Australian Bureau of Meteorology data. Contrasting shades rank areas on the map for which rainfall data reflects the overall deficiency status for that area (based on all data available). Areas with a darker shade of red indicate that there was a significant change in rainfall percentile ranking for that area. (Right) Barley production in Australia based on Shire production data in tonnes from the Australian Bureau of Statistics (ABS) census and Grain Industry Association of Western Australia (former) estimates from 2013-2015. The overlap appears to be more concentrated around the grain-growing areas along the southwestern region of Western Australia, and southeastern Australia between Victoria and South Australia. There have been more recent droughts that have affected the east coast of Australia in New South Wales and Queensland more severely, that are not indicated on these maps; however, the grain yield data indicate the correlation between drought and grain yield based on the trends which are expected to continue along these gradients. As such, there have been concerted efforts to place weather stations and use satellite data to map this microclimate effect, however, given the magnitude of the scale of the area, a more precise method is required.

Barley is considered the most drought tolerant of the small grain cereals, especially in Mediterranean rim countries (Forster et al., 2004; Boudiar et al., 2016). However, extreme weather conditions including microclimate occurrences are widespread in Western Australia (e.g. snowfall in October), and where rainfall is expected to decline in the coming decades, increasingly poor understanding from previous studies (concerning long term assessments) e.g. (Solaaiman and Hirata, 1997; Abbott and Murphy, 2003; Diepeveen 2011; Garcia et al., 2015; Ferdous et al., 2016; Pospisilova et al., 2016), have lead to misinterpretation of seasonal variation (Figure 19). The vast scale of the Australian growing region makes linking phenotype to transcription factors unrealistic. In barley, high variation in responses to drought likely exists in primitive landraces and related wild species gene pools (Dwivedi, 2016b). Reports suggest that barley lines derived from crosses with exotic landraces not only out-yield lines derived from crosses without landraces under drought conditions but, the grain yield of lines derived from crosses with specific landrace such as Tadmor (Syrian landrace), can yield as much as twice as much compared to lines lacking drought-tolerant traits in their pedigree. New genetic technologies are enabling breeding companies to integrate ‘omics,’ high throughput arrays, and bioinformatics platforms approaches for variety selection (Ferdous et al., 2016). New yield markers, e.g. (Cattivelli, 2008; Mansour et al., 2013; Ahmed et al., 2016) (Table 6).
Table 6: Summary of relevant reviews on drought, phenotyping, genotyping, logical processes, plant adaptation, and yield improvement in plants (in no particular order).

<table>
<thead>
<tr>
<th>Reviewer(s)</th>
<th>Review Topic(s), Summary, Recommendations, and/or Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dwivedi et al., 2016</td>
<td>This study reviews landrace germplasm for improving yield and abiotic stress adaptation. Landraces identified for traits with more efficient nutrient uptake and utilisation, as well as useful genes for adaptation to stressful environments such as water stress, salinity, and high temperatures. A proposed systematic landrace evaluation may define patterns of diversity, which will facilitate the identification of alleles for enhancing yield and abiotic stress adaptation, thus raising productivity and yield stability of staple crops in vulnerable environments.</td>
</tr>
<tr>
<td>Wang et al., 2016</td>
<td>Bioinformatics approaches indicate that a specific class of plant smRNA’s (small RNA), induced by various abiotic stresses. The sutr-siRNAs, have the potential to target regulatory regions within introns thus, they may act in the regulation of splicing in response to environmental stresses, which are essential in drought signalling pathways.</td>
</tr>
<tr>
<td>Mickelbart et al., 2015</td>
<td>Selective breeding for the combination of beneficial loci in germplasm has improved yields in extreme environments. Targeted identification of genetic markers to stress adaptation has become precise and enabled introgression into elite varieties. These loci associated with regulation, function, duplication and neofunctionalisation of genes that maintain plant homeostasis.</td>
</tr>
<tr>
<td>Rahaman et al., 2015</td>
<td>High-throughput phenotyping platforms can capture phenotype data from plants in a non-destructive manner. This approach allows identification of the genetic basis of agriculturally important traits which will improve the description of complex plant phenotypes.</td>
</tr>
<tr>
<td>Sheoran et al., 2015</td>
<td>This review summarises the status of mapping studies for the various traits associated with drought tolerance in wheat and barley. They surmise that there is a need to explore the natural diversity in the yet untapped wheat and barley genetic resource pools that may enable the development of elite genotypes with improved adaptation to drought stress.</td>
</tr>
<tr>
<td>Gutzat et al., 2012</td>
<td>This review looks at epigenetic stress responses at the level of signalling, chromatin modification, and the potentially heritable consequences. Especially about developmental and morphological adaptations, specific signalling and defence pathways as well as innate and acquired immunity to abiotic stress they propose plant epigenetic responses to stress as a triple defence system.</td>
</tr>
</tbody>
</table>
GENETIC PRINCIPLES UNDERPINNING DROUGHT IMPROVEMENT STRATEGIES ARE TECHNOLOGICALLY CHALLENGED

Because drought tolerance is not a simple monogenic trait, association mapping or marker-assisted selection may not identify actual variation in drought tolerance studies (Forster et al., 2004). Therefore, if using association mapping for drought studies, highly significant differences between well-watered and drought-stressed conditions are to be observed in measured traits (Abou-Elwafa, 2016); which is based on the theory that there could be blocks of genes in chromosomal regions with a low frequency of recombination (highly conserved regions) that can confer specific adaptation to drought (Lakew et al., 2011; Mayer et al., 2011). However, a high degree of phenotypic variation was detected by Robinson et al., (2016) in genotypes for root angle, and root number, with only “seven QTLs identified using DArT markers for seminal root traits from the DH population.” And “A major QTL influencing both the root angle and the root number was found to be positioned on chromosome 5HL.” Even with a genome-wide association study (GWAS) (a powerful technique for detecting natural variation and fine mapping of QTL underlying complex traits). The results presented by Robinson, seemingly contradict others. That a population of diverse individuals and highly polymorphic markers (that show a whole-genome distribution) Chhapekar et al., 2016), can eliminate environmental bias, and false positives from occurring (when linking QTL to traits), as opposed to blocks of genes, or genes on individual chromosomes with inferred ‘gene abilities’ based on unsubstantiated field-glasshouse comparisons, independent of treatment, is not genetically challenging but technologically unrealistic (Kumar et al., 2015b).

Some different strategies and breeding techniques can be utilised for genetic studies once a good understanding of the functions of stress-responsive genes are known (Ferdous et al., 2016). Consideration should be taken to study stress responses in the target conditions and environments where plants commonly grow. Doubled haploid populations are genetically stable and often have a greater spread of species diversity throughout the entire population of inbred lines favouring the selection techniques associated with abiotic stress (Samal and Martin, 2015). A primary genetic linkage map, consisting of an easily scored polymorphic genome, is an essential prerequisite to genetic studies in any organism, and scientists have reached a new milestone on sequencing the barley genome with nearly two-thirds of all barley genes completed (Mayer et al., 2012). As Zhang and Li, (2016) suggest, the wild genotypes will contribute toward the elucidation of mechanisms of drought resistance as well as the
identification of the specific genes involved in drought tolerance, thereby resulting in future improvement of cultivated barley.

The majority of drought studies have used simulated drought conditions with a remarkable increase in precision but a questionable relevance to actual drought conditions themselves. Mostly these studies consider the incredible diversity that wild or unknown genes bring to increase resistance but don’t find the effect that the introduced genes ‘skew’. Results inferring resistance to environmental specific transcription factors, without looking at the habitat (canyon) of evolution at all, are questionable data fishing exercises (Jaganathan et al., 2015). Evidence all points to a significant financial investment being required; however, in fact it is the opposite, with little support considering omics and holobiont theory and in particular horizontal gene transfer theory in agronomic plant biology studies concerning grain yield. Support is arriving almost four decades late since its suggested use in plant biology (Jones, 1985; Trewavas 2001; Voltas et al., 2005; Zilber-Rosenberg and Rosenberg, 2008).

BIOTECHNOLOGICAL BREAKTHROUGHS ARE HAMPERED BY PHENOTYPE BOTTLENECKS

Biologists studying plant abiotic stress typically set out to follow the rigorous process of mapping QTL to gene-specific regions for fine mapping, candidate gene selection and then; follow a procedure for CRISPR-Cas 9 for a knockout or an insertion (Jones, 1985; Jones, 1995; Jones, 2014). Eventually, this may lead to the publication of a new QTL, (or more recently eQTL if their research facility is equipped with a meta-bisulphate SEQUEL II sequencer (Appendix 1 and 2). This process can take anywhere from 1 to 20 years. However, in the last 30 years of scientific research since the invent of PCR, scientists and in particular plant biologists, have struggled to find single genes that control abiotic stress. There exists only one patent that mapped the root length trait in cereals (rice) to a single gene in water-stressed conditions (in the laboratory) (Uga, 2010). Conventional breeding for drought resistance adopts mainly a large-scale backcross strategy to develop new varieties with improved drought and high yield potential (Hu et al., 2014). Plant breeding either the conventional way or through the use of genetic engineering is highly sophisticated. The process of plant breeding for desired traits requires significant amounts of genetic variation to occur at intra-specific, interspecific and inter-genetic levels. Genetic variability is achieved through new gene combinations, and by inter-crossing genotypes that hold desirable characteristics or through introducing new
germplasm from other existing breeding programmes (Ashraf, 2010). The high genetic
diversity that exists in germplasm collections is currently under-utilised for abiotic stress
tolerance (Fleury and Langridge, 2014).

ADAPTATION STRATEGY AND ENVIRONMENTAL CONSIDERATIONS IN
BARLEY GENOME SEQUENCING INTERACTOMICS

Barley possesses a large and highly repetitive genome that until recently has remained difficult
to sequence entirely. Scientists have reached a new milestone on sequencing the barley genome
of its 5.1 billion base pairs (5.1 Gb) (Mayer et al., 2012). The barley genome grants high
homology to wheat genomes A, B, and D. Colocalisation is also allowed through the genomes
of other grasses such as Arabidopsis and rice. The localisation of chromosomal segments
through synteny or the conservation of blocks of order within two sets of chromosomes across
species enables full sequencing to within approximately 95% (Ghiurcuta and Moret, 2014;
Muñoz-Amatriain et al., 2015; Tyczewska et al., 2016). There is a need to implement strategies
to offset the harmful effects associated with the consequences of drought on food security and
crop production internationally and locally. However, as with all genotyping and phenotyping
studies inferring positive impact is dependent on the environmental interactions inside and
outside of the plant. Both can be highly variable, which is why interactomics is important in
abiotic studies. Interactomics involves understanding transcriptional control beyond gene
annotation. Brauer et al., (2014), who stated that one of the main objectives in plant biology is
“to predict plant responses given genomic information and environmental circumstances
reliably.”

PHYSIOLOGICAL LEAF FUNCTION DURING COMPLEX ABIOTIC STRESS

Temperature directly influences leaf susceptibility to drought stress, but, leaf susceptibility is
also dependent on (i) the radiation and atmospheric conditions (time of day, intensity, clear or
cloudy sky, air temperature, wind speed), (ii) soil conditions (soil type, soil water content, etc.),
and (iii) canopy properties (morphology, density, height) (Maes and Steppe, 2012; Costa et al.,
2013). The combined sum of these factors also influences the size and ratios of the radiant,
sensible and latent heat flux ratios (Allen et al., 2011; Fanourakis et al., 2015). For this reason,
we must consider abiotic heat as an active feedback system for when phenotyping drought
response. In spring barley, an air temperature ~20–25 °C is deemed to be optimum for growth
and development. Any increase in temperature above these values often results in the reduction of agricultural productivity (Kruszka et al., 2014).

Photosynthesis is considered the most fundamental physiological process affected by drought due to a reduction in the CO₂ assimilation rate and disruption of primary photosynthetic reactions and pigments (Rao and Chaitanya, 2016). The metabolic process in photosynthetic organisms for high-temperature stress is often to inhibit production before the impairment of other cell functions. Cells accumulate active substances, such as proline, sorbitol, and glycine betaine, in their storage organelle called vacuoles (Rizhsky et al., 2004; Valliyodan and Nguyen, 2006; Szabados and Savoure, 2010). These storage compounds can reduce a plant cell’s water loss. When the osmotic pressure in the cell lowers, the concentration of intracellular compounds rise, resulting in damage to the cell membrane and larger molecules of the plant cells (Wilkinson and Davies, 2010; Wendelboe-Nelson, 2012). Enzymes provide a mechanism to ensure that cell proteins and membranes retain their structure and continue to function (Okumoto et al., 2012). If a lack of water further prevents photosynthesis, and if the chloroplasts are additionally exposed to intense ultraviolet radiation, they directly attack the enzymes and membranes in the cell and destroy them (Farooq et al., 2009; Millar, 2016).

Biological mechanisms that plants use to resist both drought and heat reported by Hu and Xiong, (2014) and others (Sheoran et al. 2015) include the leaf function traits: (i) leaf rolling, (ii) leaf expansion, (iii) leaf waxiness, (iv) cuticle tolerance, (v) stomatal density, and (vi) stomatal aperture. Rapid loss of water from the surface of leaves of plants causes a shunt, followed by the disruption of cellular membranes, making them more permeable to a range of ions (Wahid and Shabbir, 2005; Munns et al., 2010). At high temperatures (> 45 °C), heat results in denaturing protein, enzyme and membrane lipid expression (Cheng et al., 2009). This process can cause cell injury resulting in plant death within minutes due to organisational cellular collapse (Wahid et al., 2007). Plant death can still occur from extended exposure at a lower temperature since plant function, and efficiency can be severely affected (Awasthi et al., 2015; Oukarroum et al., 2016). At lower temperatures, i.e. between 35ºC-40ºC, the rapid loss of water from the surface of leaves of plants causes a state of dehydration to occur, making them more permeable to a range of ions. Which in turn may cause alterations in membrane fluidity potential that affects the function of membrane-bound ion transporters (Singh and Grover, 2008).
Stomata and guard cells on the leaf surface allow control of gas exchange between the plant and the atmosphere (Engineer et al., 2016). Guard cells are also involved in the uptake of CO₂ and can adjust the stomatal aperture of stomatal cells by making adjustments in turgor and volume within themselves (Osakabe et al., 2014). Guard cells are involved in the early onset of environmental change and thus play a crucial role in plant signalling (Saucedo-Garcia et al., 2015; Ahmed et al., 2016). Reversible phosphorylation events in the plant are widely known for the production of proteins which at the cellular level play a vital role in the regulation of stomatal movements (Bartels and Sunkar, 2005; Gupta et al., 2013). The phosphopeptide-binding proteins known to be involved in phosphorylation, and stomatal movements are also involved in the functioning of ion pumps, channels, protein kinases, and substrates (Cotelle and Leonhardt, 2015). According to Hasanuzzaman et al., (2016), “chlorophyll content, dry biomass, shoot water content, and stomatal density did not correlate well with drought tolerance (tested via R^2 correlation to drought tolerance index). Transpiration rate and chlorophyll fluorescence Fv/Fm were more correlated to drought tolerance index.” On the genetics that physiology plays in regulating response to complex abiotic stress as it relates to grain yield, it is not as easy as suggested by Zhang and Li (2016), simply because the repeatability of such experiments can not ever be guaranteed (Manter et al., 2010).

DOUBLED HAPLOID CHROMOSOMAL GENETIC IMPROVEMENTS IN BARLEY BREEDING FOR ABIOTIC STRESS TOLERANCE

A doubled haploid (DH) is a genotype formed when haploid cells undergo chromosome doubling. Artificial production of doubled haploids is essential in plant breeding and doubled haploid lines, are particularly suited for diploid species such as in barley. Much of the work of Zhang and Li, (2016) focusses on doubled haploidy (DH). DHs are homozygous at all loci and capture variability within self-pollinated crops or in parental inbred lines for the production of hybrid, cross-pollinating plants (De La Fuente et al., 2013). The output of pure lines using doubled haploids has several benefits over conventional methods (Abdurakhmonov et al., 2011). The main advantage of DH breeding strategies relates to homozygosity being achieved in one generation (Rostoks et al., 2005; Reetinder, 2009). This eliminates the need for generations of self-pollination events which is a substantial time-saving benefit, particularly in biennial crops or crops with a long juvenile period (Catoni and Gratani, 2014).
In barley, haploid production is the result of extensive (wide) hybridization between cultivated barley (*Hordeum vulgare*, 2n=2x=14) as the female and wild *H. bulbous* (2n=2x=14) as the male (Murovec and Bohanec, 2011). After fertilization, a hybrid nucleus containing the chromosomes of both parents results. During early embryogenesis, chromosomes of the wild relation are aborted from the cells of the developing embryo, leading to the formation of a haploid germ. A haploid germ is later extracted and grown in vitro. Pollination with maize pollen could also be used for the production of haploid barley plants but at lower frequencies (Abdurakhmonov, 2011). Doubled haploids are stable genetic clones and show the entire genetic diversity of both parents in a multivariate normal distribution, and are often used for chromosomal genetic studies. Their use can also expedite commercial release, for example, by aiding strategies such as those used by Diepeveen (2011), Maddern (2016), Zhang and Li, (2016) (and others) to rapidly generate new lines for government use or public release to breeding companies, research groups or more giant conglomerate corporations (GRDC) in Western Australia, Australia or internationally (and benefit from material transfer protocols).

ENVIRONMENTAL SCENARIO SIMULATION PHENOTYPE, GENOTYPE INTERACTIONS

Phenotyping is King and heritability is Queen. Valuable phenotyping is the collection of accurate data that minimises experimental errors due to uncontrolled environmental or experimental variation from a biological and agronomic point of view. Tuberosa, (2012) suggests that there are many studies reporting thousands of drought-responsive genes and QTL. However, the relevance of these QTL regarding real field conditions is often marginal or even sometimes questionable. As many experiments are limited to glasshouses conditions, experimental connection without a replicable field-yield component highlights the importance of mimicking stress conditions in both controlled and uncontrolled environments (Chaerle et al., 2007; Rahaman et al., 2015).

In drought stress studies, phenotyping is more critical than genotyping in establishing the relationship between gene function and plant traits (Chhapekar et al., 2016; Furbank and Tester, 2011). However, because genome sequencing and molecular breeding techniques are dramatically increasing the speed at which large populations can be genotyped phenotyping has in many cases become the rate-limiting step in breeding efforts (Masoudi-Nejad et al., 2007; Walter et al., 2015; Araus and Cairns, 2014).
Improving cropping systems for drought stress environments involves time-consuming selection methods, coupled with large volumes of genotypic information. White et al., (2012) suggest that field-based phenotyping for large populations is increasingly recognised as the only approach delivering the requisite throughput regarding numbers of plants or populations, as well as accurate descriptions of trait expression in cropping systems (Gonzalez-Dugo et al., 2015). Field-based phenotyping methods include; (i) selection of phenotypic traits, (ii) defining and measuring the relationship of traits to physiological and morphological responses, (iii) using technology to analyse, record and measure the traits (field and controlled environments), (iv) including accuracy and ease (amount of time) of data collection in design, and (v) data management and data processing of large sets (e.g. 3D vs. 2D) using cloud-based servers or multiple devices. Measuring traits that directly associate with all biotic/abiotic stress variables can cause other unwanted variation in the population (to that of the trait in question), so experimental accuracy and other effects which may muddle response measurements are also essential considerations (Zhang and Li, 2016). It is crucial to consider the context of how a genetic interaction might play out first, and then test it via experiments, but this is not a common approach due to more rapid advances in molecular biology, and lesser so in technologies where people do not have the ability to reverse engineer such molecular pathways concerning extensive phenotype scenarios in field and glasshouse design and in multiple environments. Why do we keep trying to make things harder for ourselves?

ENVIRONMENTAL AND BIOLOGICAL QTL HEURISTICS

The statistical analysis associated with the mapping of QTL is continually changing (Heffner et al., 2009). QTL mapping in statistical genetics is mainly used to determine the complexity of the genetic architecture underlying a phenotypic trait. QTL mapping was sufficient for conferring plant resistance against insects as in Barah and Bones, (2015), or for structural modelling to link quantitative genetic information to morphological development and physiological processes as in (Xu et al., 2011). Understanding whether a phenotype is shaped by many independent loci, or, by a few loci, or by loci interaction, is the main aim of statistical genetics and provides information on how the phenotype may be evolving (Kumar, 2015b).

A new software statistical package published about genetics in 2014 to predict and measure genome-wide regression uses an algorithm based on a Gibbs sampler with scalar updates is
this “BGLR,” R-package (Pérez and De Los Campos, 2014). The package implements an extensive collection of Bayesian regression models, including parametric variable selection, shrinkage methods, and semi-parametric procedures to correlate phenotypic trait data (binary or other) to achieve ‘relative’ absolute values for marker effect QTL’s in genetic populations at a genome-wide level. Another approach to QTL mapping involves the MCMCglmm R library that uses the MCMC algorithm and is for more massive datasets, such as Hi-C (chromosome conformation capture). This hidden Markov chain, genome architecture capture method is limited in computing power available. Hi-C can theoretically implement, via a three-dimensional model, deliver confidence estimations, to approximate the chromatin structure within the genome (Ay and Noble, 2015).

SUMMARY

This review only points to one thing, that our understanding of environmental data and QTL or eQTL heurisitcs are increasingly complex, genetically but not necessarily observationally in nature. The more we learn and read about data science and machine learning as it applies to A.I., the more we realise that there is a divide. Often theories about gene function predictions are easily digitalised and then summarised alone by zero’s and ones. Companies are increasingly endorsing the practice, with little or even no appreciation of the actual data collection and the theory and thought development, e.g. (Jones, 1985). These two projects are an attempt to bridge the complex science of genetics with telecommunications hardware and software, but more importantly describe and document the incredible diversity in environmental data collection in plant genetics studies as it relates to two novel Tibetan-Australian barley varieties bred by the author that were eventually was used to create a deepfake game (>150 years of history studies including before the industrial revolution). For agricultural improvement as it relates to the purpose of addressing the hypothesis, concerning data onwership, and A.I., the trend that increasing understanding on the environment will lead to better outcomes in terms of water quality and food security is complicated and only about data ownership. A very important consideration for why deepfakes arise and are used nowadays in science.
PROJECT 1: RAPID DOWNSTREAM GLASSHOUSE FIELD TRIAL GENETICS ASSESSMENTS FOR QTL VARIABILITY MINIMISATION IN GPU CORE PROCESSING AND TELEMATICS DATA ANALYSES

EXECUTIVE SUMMARY

Phenotyping of cereal crops at a scale for valid selection of traits concerning variation within a paddock or experimental trial requires efficient data capture and analysis. There are increasingly more high-resolution data platforms available for the integration of phenotype to predict grain yield, crop health, growth index etc., however, none that incorporate this approach with the genotype-specific data sequences readily available (real-time GWAS or EWAS). The reason is that the data capture and integration for downstream analysis are computationally complex and rely on synchronous time dependencies. However, the possibility of such a real-time analysis is no longer theoretical.

In a real-world scenario, the question remains; what is currently the maximum amount of data that can be processed in the minimum amount of time, that would best enable real-time decision making to the benefit of plant breeders, scientists, and farmers (in remote locations), based on available or collectable data? To answer that question, new methods were developed utilising high-quality imaging devices, microscopes, and sensors coupled with UAV drones, high precision telemetry software, and instruments. To determine along with a pre-processing algorithm (based on abiotic stress plant genetics) and with it, an offline database capture system for subsequent real-time, genetic crop health-yield index measurements to be made, thus verifying the complementary genetic analyses (online). This research provides the preliminary work developed as a pipeline using a unique Tibetan-Australian barley doubled haploid population (yield, maturity, canopy-temperature, NDVI, and RGB imagery) as plant characteristics, under a combination of heat and drought stress. This database (data lake) and pipeline were built with a specific .NET instruction set focus that will enable secure scalability across multiple instances and platforms and for the creation of a digital twin simulation concerning the genetics of barley under various cropping environments.
BACKGROUND

Barley pre-breeding enables the selection of elite lines that show adaption to a breeding target such as abiotic stress. Current techniques use both genetic and phenotype information from several environments to identify elite lines. This process is sped up when traits that relate to a breeding target are highly heritable. A key challenge in this type of breeding is to identify the association between traits and the breeding target. These high-precision experiments are often done in controlled environments with specific trial-designs enabling the confirmation of trait associations. Once these trait-associations are identified, then they are evaluated in the field in several settings for validation of performance traits, e.g. grain yield. This project assessed high-resolution phenotyping both in the glasshouse and the field for abiotic heat stress and water stress (drought) (a focus on the variation in datasets used to determine pre-breeding elite varieties that are used to select elite lines for high heritability of essential traits such as grain yield or malting quality for example).

This generally includes the construction of a database and online servers to compile and analyse the scores from collected phenotype measurements (data) required and also includes genetic sequences including candidate genes, previous research databases of QTL, or other significant transcription factor mapping, and even fine-mapping QTL. The information surrounding the phenotype can then be used to assess plant responses specific to a specific genetic architecture rapidly, a knockout or insertion can be generated using CRISPR and the desired plant response visually evaluated. The challenge is the time it takes to achieve this result, which may, in some instances, exceed ten years before a commercial release. This project methodology was targeted at a four-year window offering a significant advantage over a 10 year window in targeting specific phenotypes due to the shorter timeframe required to release the varieties. This would benefit growers due to a potential for a decreased amount of allocated budget to develop and then the varieties themselves with multiple environmental selection data to support the pedigree (in its current state).
AIMS

1. Datamine candidate genes based on the literature and internet accessible databases (including candidate gene sequence data from the HW1 shotgun sequence based on the MOREX alignment).

2. Undertake laboratory, glasshouse and field trials to determine the best telemetry diagnostics for decision making concerning yield as it relates to abiotic stress;
 a. The selection of suitable environments and stresses that best reflect the variability required to compare individual and combined responses (of the available barley varieties).
 b. Glasshouse and field evaluations (3x field trial; 3x glasshouse).
 c. Creation of multiple end-node databases for subsequent API latency (Δ) measurement across scaleable cloud instances concerning datamined genes.

METHODS AND RESULTS

CANDIDATE GENE DATA MINING AND SELECTION (METANALYSIS)

Based on the review of literature, and accessibility of databases conferred through association with the Western Crop Genetics Alliance (formerly Western Barley Genetics Alliance), a Microsoft Excel file was constructed (*.xlsx) (via a data mining approach) and is at the centre of the statistical methods required for a real-time GWAS QTL mapping platform; which may then be used to train or model (statistically) plant health responses thereafter, or for yield prediction (Figure 20). This file also builds on the research outputs of the Agtech group at Murdoch as well as the Western Crop Genetics Alliance who the author aided by growing the grains at DPIRD, and by conducting the RNA extraction in the construction of QTL derived cluster matrices. These matrices were subsequently used to match the corresponding phenotypes (grain colour gene(s) inferring expression of the black and white grain colour trait) to shotgun sequences (sequenced by the WBGA) that were associated loosely to the Morex whole-genome sequence; for 120 lines (unique clones) of the HW1 DH population (Hindmarsh wild Tibetan cross) (for the data see Long et al., 2018).
Figure 20: Data mining reveals candidate genes, including those specific to functional categories. It shows the prevalence of their functional characteristics specific to barley adaptations for abiotic stress concerning intracellular signal transduction and the protein functional categories for drought. Data was ethically mined as per the Kyoto Encyclopedia for Genes and Genomes database and associated protocols and included genes mainly selected from, (i) the ABA pathway, (ii) the pentose phosphate pathway, (iii) the plant circadian rhythm pathway, and (iv) the carotenoid biosynthesis pathway, concerning the photosynthesis process and the GABA shunt mechanism. Precisely, gene-specific calling and mapping of keywords (chart title “Capitalised” letters) and via a remote meta-analysis of the [http://pgsb.helmholtz-muenchen.de/plant/index.jsp] command line and associated library tool strings (XML Java), mapped the database command line entries to referenced console opensource libraries. The entries were then converted to text and used to tabulate a list of candidate genes in an integrated and standardised, tabular, free-form as per the GNU general public license-(Free Software Foundation, 1991). The alignment tools were accessed remotely from a terminal IP address linked to the Western Crop Genetics Alliance database via a virtualised Java runtime container; using an XML font based tool (copy paste) provided in the Windows 7; Office365 student's tool kit from which remote access was still supported by the Helmholtz Zentrum dashboard as of May 2020. The database IP address, portal and command-line interface was remotely and freely accessible at that time from Murdoch University in 2016 and accessed on campus by the author. The process was also completed to provide a framework for the embedded .NET assemblies required to associate these genes with the freely available USA based Morex alignment sequences, and for a better understanding of the ethics of digitalised Tibetan-Australian barley genotype captured and analysed by Long et al., (2018). And for further use concerning the thesis aims and hypothesis.

<table>
<thead>
<tr>
<th>Pathways of Intracellular Signal Transduction</th>
<th>Gene</th>
<th>Protein function</th>
<th>Functional category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein kinase: Drought, salt stress or oxidative stress</td>
<td>GmMK1</td>
<td>MAPKK</td>
<td>MAPKs</td>
</tr>
<tr>
<td></td>
<td>DSM1</td>
<td>MAPKK</td>
<td>MAPKs</td>
</tr>
<tr>
<td></td>
<td>OsCPK4</td>
<td>calcium-dependent protein kinase</td>
<td>CDPK</td>
</tr>
<tr>
<td></td>
<td>OsPP18</td>
<td>Protein phosphatase</td>
<td>Protein phosphatase</td>
</tr>
<tr>
<td>Transcription factors: Drought, salt stress, submergence or oxidative stress</td>
<td>DST</td>
<td>C2H2 zinc finger</td>
<td>Zinc finger</td>
</tr>
<tr>
<td></td>
<td>ZFP36</td>
<td>C2H2 zinc finger</td>
<td>C2H2 zinc finger</td>
</tr>
<tr>
<td></td>
<td>OsZRF1</td>
<td>CCCH zinc finger</td>
<td>CCCH zinc finger</td>
</tr>
<tr>
<td></td>
<td>SUB1A</td>
<td>ERF</td>
<td>ERF</td>
</tr>
<tr>
<td></td>
<td>JERF3</td>
<td>AP2/ERF</td>
<td>AP2/ERF</td>
</tr>
<tr>
<td></td>
<td>GmWRKY27</td>
<td>WRKY</td>
<td>WRKY</td>
</tr>
<tr>
<td></td>
<td>GBWRKY17</td>
<td>WRKY</td>
<td>WRKY</td>
</tr>
<tr>
<td></td>
<td>GmNAC29</td>
<td>NAC</td>
<td>NAC</td>
</tr>
<tr>
<td></td>
<td>SNAC3</td>
<td>NAC</td>
<td>NAC</td>
</tr>
<tr>
<td></td>
<td>GmWRKY17</td>
<td>ASR</td>
<td>ASR</td>
</tr>
<tr>
<td></td>
<td>GmNAC29</td>
<td>SRO</td>
<td>SRO</td>
</tr>
<tr>
<td></td>
<td>SNAC3</td>
<td>SRO</td>
<td>SRO</td>
</tr>
<tr>
<td></td>
<td>TsASR1</td>
<td>S-RK interaction protein</td>
<td>Other TF</td>
</tr>
<tr>
<td>Other nuclear proteins: Drought, salt stress, cold, osmotic or oxidative stress</td>
<td>OsSROc</td>
<td>Carotene deoxidase</td>
<td>SRO protein</td>
</tr>
<tr>
<td></td>
<td>Ta-tra1</td>
<td>9-cis-epoxycarotenoid</td>
<td>9-cis-epoxycarotenoid</td>
</tr>
<tr>
<td></td>
<td>OsSKP3</td>
<td>MetSOD</td>
<td>MetSOD</td>
</tr>
<tr>
<td></td>
<td>DSm2</td>
<td>APX</td>
<td>APX</td>
</tr>
<tr>
<td></td>
<td>SgNCE1</td>
<td>NADP-dependent</td>
<td>NADP-dependent</td>
</tr>
<tr>
<td></td>
<td>Mio0D</td>
<td>aldose-lyde</td>
<td>aldose-lyde</td>
</tr>
<tr>
<td></td>
<td>OsSROx3</td>
<td>reductase</td>
<td>reductase</td>
</tr>
<tr>
<td></td>
<td>MsA2R</td>
<td>Type 1 metallooxigen</td>
<td>Type 1 metallooxigen</td>
</tr>
<tr>
<td></td>
<td>OsMT1s</td>
<td>Type 3 metallooxigen</td>
<td>Type 3 metallooxigen</td>
</tr>
<tr>
<td></td>
<td>GmMT3a</td>
<td>Type 11B Ca2+ ATPase</td>
<td>Type 11B Ca2+ ATPase</td>
</tr>
<tr>
<td></td>
<td>OsAAG6</td>
<td>Arginase decarboxylase</td>
<td>Arginase decarboxylase</td>
</tr>
<tr>
<td></td>
<td>PADC</td>
<td>Calcium transporters</td>
<td>Calcium transporters</td>
</tr>
<tr>
<td></td>
<td>OsOA-T</td>
<td>Ornithine</td>
<td>Ornithine</td>
</tr>
<tr>
<td></td>
<td>OsSUN3</td>
<td>gamma-ammonotransferase</td>
<td>gamma-ammonotransferase</td>
</tr>
<tr>
<td></td>
<td>TaSUN1</td>
<td>NTP-dependent RNA/DNA helicase</td>
<td>NTP-dependent RNA/DNA helicase</td>
</tr>
<tr>
<td></td>
<td>12-oxo-phytodienoic acid reductase</td>
<td>12-oxo-phytodienoic acid reductase</td>
<td>12-oxo-phytodienoic acid reductase</td>
</tr>
</tbody>
</table>
COMBINED HEAT AND DROUGHT STRESS DATA REQUIRED FOR YIELD CORRELATIONS (BASED ON ENVIRONMENTAL GEO-LOCATION VARIATION)

To determine the best traits for abiotic stress measurement including for; (i) heat stress, (ii) water stress and (iii), drought tolerance (for comparison of grain yield between the various varieties, soils, glasshouses and field environments); the Penman-Monteith (PM) model of the Thornthwaite PE algorithm was selected (Equation 1). This equation is considered the most comprehensive algorithm for modelling potential and actual evapotranspiration which gives additional estimates of the plant and environmental resistance to atmospheric demand (Sheffield et al., 2012). “The PM models evaporation as a combination of irradiative and aerodynamic processes”, thus it gives a more realistic estimate, having the potential to be influenced by changes in humidity, radiation, and wind speed, as well as temperature (Trenberth et al., 2014).

\[
PE = \frac{\Delta}{\Delta + \gamma} \cdot R_{net} + \frac{\gamma}{\Delta + \gamma} \cdot 6.43(1 + 0.536U)D
\]

PE is (mm d\(^{-1}\)) assuming zero stomatal resistance; \(\Delta\) (Pa.K\(^{-1}\)) is the slope of the plot of saturated vapour pressure against air temperature, \(U\) is the wind speed (ms\(^{-1}\)) at 2 m height, \(R_{net}\) is the net radiation (W.m\(^{-2}\)), \(D\) is the vapour pressure deficit (Pa), and \(\gamma\) is a psychometric constant (Pa.K\(^{-1}\)). Although as precise as is reported; whether the model can be used in microclimate calculations considering the scales at which such phenomena can change the individual components that make the sum of the model is unknown to the author.

Other components that were used and considered for statistical modelling included: (i) relative humidity, (ii) canopy temperature, (iii) CO\(_2\), (iv) wind speed (in field trials), (v) soil moisture, (vi) soil properties, (vii) mycorrhiza (viii) slope, and time and date (of sampling). This research project also made use of nearby weather stations for estimation and quantifying traits where the direct measurement was not available (API information in the declaration). Based on the above equation it was determined that environmental variation concerning grain yield based on the combined effects of heat stress and drought would be best captured at (DPIRD) South Perth (2016), (DPIRD) Wongan Hills (2017) and DPIRD (Katanning) in 2018. Although the decision to select these areas is made seasonally (for the purpose of capturing enough variation concerning plant responses in semi-arid and heat stress-prone regions), the choices made were based on the assumption that the environmental difference would be significant enough for yield mapping regardless of the prevailing climate. However, this was also factored into the decision making process.
GLASSHOUSE AND FIELD TRIAL DATABASE (DATA LAKE) DESIGN

Abiotic stress and yield-related traits were benchmarked and used to evaluate the grain yield specific to a ‘plant health index score’ for the climates of growing regions that are known to experience abiotic stress (including heat, drought, and frost); at various times of the year during the growing season. To achieve these aims, three glasshouse experiments were established as well as three field trials in Western Australia’s cereal growing region.

This research had access to a range of barley germplasm, including wild Tibetan barley (W1). “The seeds (W1) in this collection were initially collected in Tibetan mountain during 1970’s. These were subsequently stored in Sichuan Province until 1995. Following this, the seeds were brought to Zhejiang province in 2005 for heat and drought screening, then introduced to Australia in 2010. It first went to field trials in Western Australia around 2013” (Prof. C. Li personal communication, 16th January 2019). This originally six-rowed wild barley (W1) was crossed with a former top-performing Australian commercial food variety (Hindmarsh); to create an approximately 420 ‘line’ doubled haploid population (HW1) by Lee-Anne McFawn from DPIRD; who is also a member of the Western Crop Genetics Alliance (WCGA). Other lines accessed initially included Commander and the drought-resistant lines Tadmor (Syrian landrace) and W10403 (an Italian landrace Barke cross) for glasshouse trials as well as a more extensive selection of reference lines including varieties such as Buloke, Vlamingh, and Gairdner in subsequent years for appropriate benchmarking (in the glasshouse and field trials).

To achieve the aim concerning evaluating grain yield under abiotic stress a preliminary screening had already demonstrated that “W1 has high levels of tolerance to drought” (Prof. C. Li personal communication, 11th November 2015). And, a significant bulking up achieved in December 2015 in South Perth harvested and, threshed and cleaned, by the author of the doubled haploid (DH) from Hindmarsh/W1 population (HW1) followed by discussions concluded that “HW1 will likely contain genes to aid survival in the cropping regions and offer improved yields under abiotic stress threat scenarios.” (Dr. D. Diepeveen personal communication, 1st April 2016). A shotgun whole genome sequence of 120 of the DH lines (sequenced by WCGA, was also provided).

Based on these discussions, a table was constructed concerning the best abiotic stress tolerance traits specific to the environments and varieties in the study. It was intended that the diagnostic
plant responses could be validated based on the gene table to measure ‘plant health’ specific to the HW1 population concerning grain yield and then applied for precision telemetry mapping and analytics concerning environmental variation (including from year to year) big-data, IoT devices, and real-time statistics (Table 7). Each measurement throughout this project was taken and saved in the Murdoch University Microsoft OneDrive, provided through the PhD candidacy, which could then be subsequently linked to Azure for data processing calculations and down-stream heuristics concerning the project aims.

Table 7: The following traits were initially considered for the entire project concerning cereal grain yield-related traits: (i) canopy temperature depression (CTD), (ii) chlorophyll content and stay green, (iii) stomatal conductance, (iv) root traits (length, diameter, number). Furthermore, plant measurements including; (i) leaf and head-type, (ii) plant maturity, (iii) harvest-height, (iv) canopy cover/leaf density, (v) 100-grain weight, (vi) seed-colour, (vii) straw strength and, (ix) arbuscular mycorrhizas were also collected as required for determining ‘plant health index concerning HW1. After subsequent revisions and evaluations, these traits were fine-tuned concerning the overall aims, and tabulated below. The selected traits were measured at selected growth stages, as well as before and after prescribed (or non-prescribed) abiotic stress events in the case of fieldwork. Additionally, some of these traits and measurements required additional data (taken, measured or logged) through the use of IoT devices and sensors, drones, or calculated with other weather station data, and landscape features (e.g. slope, time of sampling, cloud cover, light intensity, CO$_2$, relative humidity, temperature), due to the additional variability that each trait experiences independent of the small environmental fluctuations (microclimate affects).

<table>
<thead>
<tr>
<th>Trait</th>
<th>Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canopy temperature: (CTD):</td>
<td>• Thermal image of canopy</td>
</tr>
<tr>
<td>Chlorophyll content & Stay green:</td>
<td>• Photo of canopy and background light intensity</td>
</tr>
<tr>
<td></td>
<td>• NDVI + RGB</td>
</tr>
<tr>
<td>At the onset of stress</td>
<td>• Plant maturity score (Zadoks) + plant height</td>
</tr>
<tr>
<td></td>
<td>• Dry-matter weight, RGB photograph</td>
</tr>
<tr>
<td>Stomatal conductance:</td>
<td>• Background relative humidity + temperature</td>
</tr>
<tr>
<td></td>
<td>• Stomatal density (mm2)</td>
</tr>
<tr>
<td></td>
<td>• Thermal image of the plant (stem, leaf, head) + canopy</td>
</tr>
<tr>
<td>Biomass and grain yield (at full plant maturity)</td>
<td>• Quadrat cuts dry-matter weight</td>
</tr>
<tr>
<td></td>
<td>• Grain yield</td>
</tr>
<tr>
<td></td>
<td>• Root biomass (glasshouse)</td>
</tr>
<tr>
<td>Seed colour / 100-grain weight</td>
<td>• Visual assessment</td>
</tr>
<tr>
<td></td>
<td>• Number / volume calculation</td>
</tr>
<tr>
<td>Leaf &head type</td>
<td>• Visual assessment + RGB images (area of the leaf)</td>
</tr>
<tr>
<td>Harvest height (plant height glasshouse)</td>
<td>• At harvest (logged by harvester)</td>
</tr>
<tr>
<td>Straw strength</td>
<td>• Determined by NIR and Intron</td>
</tr>
<tr>
<td>Root traits (length, number, root hairs and mycorrhiza)</td>
<td>• Determined by washing, weighing, drying, measuring, staining and counting</td>
</tr>
</tbody>
</table>

Glasshouse trials were used to benchmark reported drought and heat stress responses in a controlled environment concerning grain yield and for then determining ‘plant health index’ of the doubled haploid population. At DPIRD in South Perth in 2016, glasshouse preparation involved installing custom-built watering mats and benches and the use of two different soils; (i) a fine grained 4mm screened and visually assessed washed river sand from Western Australia (crystalline quartz, feldspars, and aluminium silicate), and a 4 mm screened Pingelly pasture (a sandy loam with high organic matter content) from UWA future farm (Figure 21 and 22).

Plant responses were induced by removing the plant's water supply for five days and maintaining the temperature of the surrounding environment to >32 degrees at the first noticeable onset of anthesis determined by daily visual inspections. Following the five days, the treated plants were be placed in another glasshouse and the water content regulated to a maximum daily amount of ~10% water holding capacity based on the (bulk density). This ensured the plant received the minimum amount of water required to reach full maturity. Still,

Figure 21: Benchmarking method for glasshouse experiments (Hindmarsh, W1 Commander, and Tadmor), and the respective treatments and soil types (brackets indicate the number of pots for each treatment); in 2016. The treatments (3 replicates) applied to both soils included; (i) a control treatment, (ii) a limited nutrient treatment, and (iii) the heat x drought treatment. Monitoring and treatment of all plants for disease, fungi, or pathogenic outbreak was be done twice weekly to ensure maximum plant growth. Plants were also evaluated before, during and after the induction of the abiotic drought x heat stress event that was subsequently used for phenotyping the entire DH population (based on Table 7). The nutrient-limited pots were included as the controls for mycorrhizal colonisation impact on grain yield under treatment.

Plant responses were induced by removing the plant's water supply for five days and maintaining the temperature of the surrounding environment to >32 degrees at the first noticeable onset of anthesis determined by daily visual inspections. Following the five days, the treated plants were be placed in another glasshouse and the water content regulated to a maximum daily amount of ~10% water holding capacity based on the (bulk density). This ensured the plant received the minimum amount of water required to reach full maturity. Still,
more importantly, the moisture of the soil continued to force drought responses within
the plants, for increased grain yield and plant health effects without reaching mortality (cell death).
After determining the maximum impact of abiotic drought x heat stress (for benchmarking lines
concerning Table 7) (Table 8), the experimental design was followed up by evaluating 120 lines
of the DH population (in 2017). The same methods were followed with slight amendments
concerning blocking the design into replicates and controls (3 and 2 respectively with additional replicates of each DH line to account for treatment design), taking into account glasshouse dimensions, bench locations, and including other commercial cultivars for determining variation concerning yield (and based on discussions with the highly skilled technical staff related to measuring field/glasshouse variability in genetics experiments >150 years intergenerational experience) (Figure 22).

TECHNOLOGY DERIVED GLASSHOUSE AND FIELD DATA-VARIATION DETECTION AND MEASUREMENT

Relationships between the grain yield data used in the formulation of plant health index (to enable comparison between glasshouse data and field data) required the use of a range of scientific instruments and devices to ensure that the quantifiable measurement of traits (Table 7) were kept consistent throughout the entire methodological process. By using the best available or the next best thing; all data and samples collected in the glasshouse was similarly mirrored in the field and kept as consistent as possible throughout the entire research period (glasshouse and field trials). Initially, handheld smartphone-enabled or PC compatible devices were utilised, along with environmental sensors, through compatible software. As the research progressed, increasingly sophisticated imaging hardware, software and integration telematics were used (Svatos and Trowbridge 2018). This constant upgrading meant that consistency improvements through the continual re-evaluation of aims were required so that any potential bias (independent of the genetic analyses as much as realistically possible) could be quantified negotiated and explained in subsequent downstream analyses. This included negotiating access to telematics data used in the UAV (uncrewed aerial vehicle) industry (Appendix 5 and 6).

Initially, the research focussed on imaging plants. RGB and visible light wavelength imaging from 2016 to 2019 was done with either the; Pixel 3, or Nexus 6 (Google, California, USA), a Samsung SM-J105 (Samsung Corporation, Seoul, Korea), the LeTV x800 Le1 Pro (LeEco Corporation, Shenzhen, China) (smartphones); or a Nikon D600 DSLR (or variant), or Panasonic 1080p (equivalent) digital video camera (Panasonic Corporation, Tokyo, Japan). These devices were utilised both in the field and glasshouse, with consistent shooting angle (45º to target) and the distance maintained. Stomatal images and mycorrhizal identification (microscopic images) were taken with a 5 megapixel 3.5 inch LCD display magnifier digital
microscope (300x Zoom) with USB/AV output or on an AmScope 40X-2500X binocular lab compound microscope (with 3D Mechanical Stage and LED). Thermal imagery was conducted with either a; FLIR Tau thermal 640 (FLIR Corporation, Oregon, USA), or a Seek Thermal (Standard (206:156) or Pro (320:280) resolution) micro USB, Android compatible (lens with dongle) (Seek Thermal, California, USA). NDVI was done with the Agrowing multispectral sensor (Agrowing, LeZion, Israel) mounted to a Sony DSLR (equivalent) camera (Sony Corporation, Tokyo Japan) (Figure 23, 24, 25, 26, 27, 28, 29).

SAMPLE DATABASE STATISTICAL OUTPUTS CONCERNING PROJECT AIMS

The following glasshouse results tables and figures represent a snapshot of the database (lake). Statistical analyses were performed using Genstat for Windows, release 18.1 (VSN International Ltd., Hemel Hempstead, UK). Data were assessed for normality and expressed as means ± standard error of the mean (SEM) (Table 8). Principle components analysis was used to evaluate the interactions (Figure 25). In each instance where the data is shown, the corresponding field data (raw data) was also collected. Some of the figures are presented as raw data, the significant digits (are given) concerning abiotic stress treatment as it relates to grain yield both in the glasshouse concerning treatment, and the rest of the data interpreted as they referred to the broader aims concerning the creation of the database (data lake) for the thesis aims.

Table 8: Specific to Treatment. Variety ANOVA (P values) for all the traits measured in the benchmarking experiment indicate that the effects were all highly significant across all traits measured, concerning the abiotic stress (heat x drought) treatments. Including for grain yield.

<table>
<thead>
<tr>
<th></th>
<th>Biomass_g_pot</th>
<th>Grain_yield_g_pot</th>
<th>Root_Harvest_Mass_g</th>
<th>Shoot_Harvest_mass_g</th>
<th>Tonnes_Ha</th>
<th>Tonnes_Ha_1_Tonnes_Ha</th>
<th>total_Root_Volume_cm3</th>
<th>total_root_AvgDiam_mm</th>
<th>total_root_Length_cm</th>
<th>total_root_SurfArea_cm2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variety</td>
<td><.001</td>
<td>0.002</td>
<td><.001</td>
<td><.001</td>
<td>0.002</td>
<td><.001</td>
<td>0.227</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
</tr>
<tr>
<td>Treatment</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td>0.077</td>
<td><.001</td>
<td>0.002</td>
</tr>
<tr>
<td>Soil_Type</td>
<td><.001</td>
<td>0.3</td>
<td><.001</td>
<td><.001</td>
<td>0.3</td>
<td><.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.012</td>
<td><.001</td>
</tr>
<tr>
<td>Variety.Treatment</td>
<td><.001</td>
<td>0.001</td>
<td>0.006</td>
<td><.001</td>
<td>0.001</td>
<td><.001</td>
<td>0.009</td>
<td>0.02</td>
<td>0.013</td>
<td>0.005</td>
</tr>
<tr>
<td>Variety.Soil_Type</td>
<td>0.121</td>
<td>0.221</td>
<td>0.412</td>
<td>0.076</td>
<td>0.221</td>
<td>0.121</td>
<td>0.685</td>
<td>0.85</td>
<td>0.515</td>
<td>0.489</td>
</tr>
<tr>
<td>Treatment.Soil_Type</td>
<td><.001</td>
<td>0.001</td>
<td><.001</td>
<td>0.001</td>
<td><.001</td>
<td><.001</td>
<td>0.043</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
</tr>
<tr>
<td>Variety.Treatment.Soil_Type</td>
<td>0.296</td>
<td>0.39</td>
<td>0.137</td>
<td>0.403</td>
<td>0.39</td>
<td>0.296</td>
<td>0.131</td>
<td>0.708</td>
<td>0.196</td>
<td>0.13</td>
</tr>
</tbody>
</table>
Figure 23: (Left) Magnified stomatal images taken of all adaxial surfaces (x3 reps) and the 1 mm scale bar inserted for all varieties so the number of stomata counted by placing black dots (in Microsoft Paint) where stomata featured in the leaf surface image (white stomata on bottom left image comparison). (Right) One of the most striking features of the wild Tibetan (W1) variety, was the physiological difference it possessed concerning stomatal density. Compared to the three other varieties (Hindmarsh, Commander, and Tadmor) the average stomatal density of wild Tibetan barley was 13 stomata per/mm more than the grand total average, indicating a distinct physiological difference concerning the stomatal apparatus.

Figure 24: (Left) 2016 benchmarking thermal image phenotyping procedure (above line before below after treatment) established relative temperature of the head stem and leaf (based on the sliding scale bar). Concerning the scale bar, the SEEK software application and a hardware limitation does not allow for fixed range temperature measurements to be made. Initially this was a challenge, because the phenotype (snips) colour that determines relative temperature could not be locked in. The glasshouse temperature had to be carefully monitored with environmental sensors to ensure that as close to possible conditions existed (before measuring) to enable comparison of before and after treatment concerning effect on grain yield. (Right) In 2017 this technique was improved in the DH phenotyping by including known controls (left of images; a bucket of ice cold water and a bucket of water @ STP, standard temp and pressure), enabled a ‘lock’ of the scale bar to be manually established. Although the precision was still a challenge to control (±7 min, ±9 max), due to the constantly changing water temperature, and the glasshouse conditions before during and after measurement. However, the total variance estimated between the 2016 and 2017 glasshouse experiments was still less overall, due to the physical temperature minimum being much further than plant temperature minimum. Switching to a Seek Thermal Pro with an additional resolution also increased quality and sharpness of images. Image Credit: The Author (Appendix 4)
Figure 25: (Left) Converting RGB thermal image outputs to a principle components analysis (multivariate biplot) concerning the 2016 glasshouse experiment. An R program was written and used to separate the thermal image colour components (red, green, blue; based on a computer generated colour palette map and averaged (Calculation)), from the images collected in the glasshouse, and then used determine the relationship that the various components had with Grain Yield and Biomass by Dean Diepeveen and the author (R Core Team, 2017). Both analyses showed good sample separation (>75%). (Right) The Blue component of the thermal image showed the strongest correlation to the Grain Yield and Biomass calculations (based on image inputs).

Figure 26: The collection of mycorrhizal data (% colonisation) based on the variety and the portion of the pot (bottom and top) sampled concerning heat x drought treatment; indicates that for all varieties in both the bottom and top of the pot mycorrhizal colonisation decreased. The collection of complementary microbial data (including mycorrhizal) as previously explored (Svatos 2011; Svatos 2012) suggests that the key to utilising such data is by identifying the management practices that might either limit or enhance the functional capacity of soil microbial processes. For management practices that reduce the potential for a soil microbial community to function an evaluation of a reduction in their use would need to be considered from both a practical and economic perspective (due to the difficulty of measuring this phenomena in the field). Although it is widely reported that there appears to be no perceived benefit to be gained concerning mycorrhizal colonization, it is an important consideration nonetheless, due to the corresponding signalling functions that may protect the plants at vital stages of development from abiotic stress, and the relationships that these functions may have with bacterial species through horizontal gene transfer that might be alleviated in downstream gene-function phenotype datamining and machine learning.

The 2015 field trial included bulking up lines of the ~420 DH population, harvesting traditionally by hand (at South Perth) with a sickle, followed by machine threshing and cleaning the grain on the Pfeuffer SNL3 seed cleaning instrument (PFEUFFER GMBH, Kitzingen, Germany). Colour trait measurement was carried out (Long et al., 2018), followed by pickling (treating for fungi), re-packing into seed canisters and re-sowing in the field again (Figure 27). Field trial design in each season was conducted using accession numbers generated by Microsoft Excel for each DH line for cone seeding in 5R*3/5 (plot type) in serpentine, into sections with 32 plots per section including buffers (by DPIRD staff) on a custom-built cone seeder setup and engineered specifically for these sorts of trials (Figure 27). The DH population and parental line data for all field trials (2015, 2016, and 2017) used this exact setup and design and formed the basis for all phenotype database structure.

Figure 27: Phenotyping the Australian-Tibetan DH population (HW1) for selecting the best yield performing lines included evaluating the major agronomic traits (yield and biomass) concerning abiotic stress response for the entire ~420 DH line population (HW1) in the field at the DPIRD research stations including South Perth, Wongan Hills, Katanning, and Merredin in Western Australia (2015-2018). The grain yield for the trials in Wongan Hills (above in 2016) and Katanning (2017 and 2018) for the Australian-Tibetan (HW1) doubled haploid DH population was “about average”; based on the comparison to other field trials and state-wide grain yield data for those season, and based on 40 years of personal experience collecting data from DPIRD trials (Mr. D. Farliegh personal communication 3rd March 2016 image (right) at the Wongan Hills Research Station at the helm of the controls). Dr. Diepeveen (centre) giving the all-clear. Image Credit: The Author.
The following year, in the 2017 trial, a drone experiment was used to gather phenotypic trait information at the whole plot level. The purpose and scope of these methods were published (Svatos and Trowbridge, 2018) (Appendix 5 and 6). Briefly, with a multispectral, thermal and RGB payloads attached to the UAV drone, flights were made over the trials at the DPIRD Katanning field site at late-flowering growth stage (Sept 2017), both early in the morning and mid-afternoon. These drone flights captured images at high-altitude (90m above trial) containing the whole-trial in one picture as well as a low-level (20m above plot) along each of the trial sections for in-depth within plot measurements. As with the 2016 field trial, equivalent measurement phenotype measurements were collected on both the 2016 and 2017 trials, including plant-maturity scores to adjust water-stress to heat and drought stress. Analysis of the other trials was also made (a ryegrass trial) including soil observations (i.e. in the swathes), for eliminating the soil component associated with the RGB imagery (Figure 28 and 29).

Figure 28: The critical component to getting good imagery for phenotyping is to establish a repeatable research design. The high-resolution imagery data taken in this trial were initially georeferenced by using a high precision GPS to build reference points for matching both on-ground activities to drone activities. These reference points can be used to create raster images or georeferenced *.tiff files in various software packages to overlay imagery as well as locate the position of the low-level imagery (within-plot) for correlations within the plot. The imagery taken by multispectral, thermal and RGB payloads was likely a world-first for a large scale 420 DH barley population. The data captured included both high-altitude and lower-altitude imagery to compare the resolution of the data collected and evaluate precision/accuracy for downstream trait and plant phenotype screening/selection. The drone was flown early-morning (first light minimum daily temp) and mid-afternoon (maximum daily temp.) to derive differences in thermal properties of the crop canopy which are often affected by combined heat and water environmental stress. The red quad ducted 4Scight P3 in the image upper right can be seen making a pass equipped with the Agrowing multispectral sensor, while the support officers, pilots, and scientists (left) observe the flight and make vital flight adjustments in real-time.
Figure 29: (Above blue line); (top left) Prior to harvest in 2017 in Katanning and during the maturing stage (before grain fill) swathes were cut in the field between the rows to account for the excessive ryegrass growth. When making final grain yield measurements, it may be overlooked that ryegrass affects the grain yield, however weed management is a major consideration when designing field trials (Dr. D. Diepeveen personal communication, 2nd January 2020). (Top right) To keep the measurement of thermal images consistent with the methods used throughout the entire research and experimental design, physically known water temperatures (ice water -3ºC, and room temperature 21ºC; verified with a hand held thermometer prior to take off after first light ~5am) were used as well as white and black (plastic reflecting sheeting), to allow for corrected (backscattered light to be quantified) with the light intensity measurement sensor measurements (Google Nexus). This control setup was a critical step for correlation to glasshouse data, as was the addition of temperature relative humidity and CO₂ sensors placed on the white sheeting. (Below blue line left quadrant); (grey scale images) The three images are of the drone capturing the data specifically as it related to the quantified properties of the two water vessels (ice water and water at room temperature), and the sheet, at first light (~5am). (Red images), At peak ambient temperature (~1pm) the three images this time with the temperature of the same bucket at ambient water temperature (37ºC) and room temperature (23ºC) for comparison, as well as the sheet (74ºC). (Below blue line right quadrant) Images show the same two flights as seen through the Agrowing multispectral payload (morning upper, afternoon lower). Additional calibration plate is provided as it relates to the images produced by the lens, that cannot detect temperature. The effect of shadowing appears to be evident in the morning flight, whereas the individual plots are harder to distinguish visually for the afternoon flights. For both payloads variation between morning and afternoon is evident, as it relates to different take off and recording times, however within each flight there are variations in image quality that the video file (particularly for the thermal payload) demonstrates as it relates to the stability of the sensor detection plate, and the video RF digital analogue real-time conversion GPU output, concerning wind speed and other physical factors concerning the flight (altitude and vibration amongst others). The multispectral camera was not used to capture video and so the images are much more stable, however the information specific to the barley population requires geotagging and raster *.tiff layering for GPS specific plot information of both payloads to maximise complex trait data capture concerning the genetics of the system database and pipeline. Notwithstanding any significant deviation in actual crop canopy temperature based on plot location, the data images and real-time video are a first for a large DH population to science.
The specifics of drone technologies utilised in this experimental design (including an in-depth analysis of the payloads) concerning their use and capability are explored in appendices (Appendix 5 and 6). The traits assessed in this trial included (multispectral for NDVI, RGB, and thermal imaging). Figure 29, shows that concerning UAV based the imagery GPS coordinates are the critical piece of information required to create not only the raster output files but also to develop models, due to the geotagging of telemetry data that is embedded in the onboard computer (the black box). Concerning the quality of this telemetry data, it is clear that the images of the crops need additional downstream analysis, which would be required to account for any potential bias due to the physical limitation of the payload, concerning the accuracy of the model. For example to look for patterns between early-morning/mid-afternoon, thermal properties of the crop canopy based on the drought index would require additional tolerances to be factored in concerning onboard computing limits (GPU:CPU limits) that factor field of view of the lens ($32° \times 26°$) into the precision of the gyroscope concerning photogrammetric modelling of the ground and canopy level environmental sensors based on sequentially calculatable drone GPS variability (in real-time).

EVALUATION OF TECHNOLOGIES USED TO COLLECT PLANT SPECIFIC TRAITS CONCERNING ABIOTIC STRESS TREATMENTS AS IT RELATED TO GRAIN YIELD

![Figure 30](image)

Figure 30: The combined total output of all ~420 DH lines of HW1 (Hindmarsh (circled red) x Tibetan barley) from the Wongan Hills trials concerning grain yield was “a little bit below average”. Variation between varieties can be seen in the grain yield outputs which range from 0-4Tonnes/Ha which should be expected in large populations of all DH lines.
The creation of the databases (phenotype, genotype and environmental data), completed the project aims. The information required for a real-time assessment concerning grain yield (as it relates to abiotic stress) from the drone images and sensor data was completed in the four years as targeted (Figure 30). Concerning minimising variation over multiple years of grain yield data from numerous locations, the selection of machine learning and data modelling would offer additional corrections. Plant growth based on real-time plant growth measurements was successfully visualised through the development of databases. Large grain yield variation was observed under simulated and real-time abiotic stress scenarios (Table 8; Figure 25, 29, 30).

DISCUSSION

The use of experimental populations to measure the potential for use in environments without known adaptation strategies may create unnecessary risk, due to the significant amount of trait expression that must be measured to eliminate bias surrounding extrapolation potential, independent of the physical limitations of the technologies themselves (which also contribute bias to stress model accuracies). Additionally, it must be reiterated that the calculation of plant-health index relies significantly (when using drones for real-time assessment) on drone stability and flight parameters (environmental data), concerning payloads and GPS telemetry, as well as background crop level data (in the canopy). Synchronising the internal clock of a drone (digital quantitative) to that of a crop (analogue qualitative) via circadian molecular pathways and Boolean gate, prime, mathematical algorithms might shed light about these bio-physical patterns. However, this complicated philosophy does not need reiterating (Appendix 2 and 5); the data is highly variable. The grain yield (although average) in one growing season, can still shed light on the genetics of grain yield and may be used for artificial intelligence machine learning algorithm creation concerning the prediction potential for subsequent years. Although the field trials and glasshouse trials took place over three years considerable variation between years is an unavoidable part of crop research. More importantly that climate is changing is not the question this project sought to answer. In fact that between year variation affected the yield validates the method used.

On the use of haploidy and high-resolution technologies to rapidly breed new varieties (clones) with an A.I. method, the ethics of such a practice would only favour the crops being grown (the model species) that farmers are targeting. Always the case in agricultural systems, but this
Tibetan cross is different (Figure 22, 29, and 30). The extent to which a highly adaptable and wild new variety may rapidly increase economic benefit to the people farming it needs careful consideration. Farmers want to increase production levels, but access to this germplasm has been taken redacted. This view is not currently shared by the Western Australian Government. A new type of approach is thus critical for validating any further research on this population. Please see the authors note in the acknowledgements section for further information or refer to Appendix 2.
PROJECT 2: A SCALEABLE, PRIVATE LTE/4G, BOOLEAN GPU NETWORKING STACK FOR AUTOMATED, REMOTE, IOT DECISION MAKING

EXECUTIVE SUMMARY

To facilitate the efficient capture, storage and implementation of data specific edge-based IoT/M2M processing, for digital twin construction and for artificial intelligence experimental design including those utilising WiFi and Bluetooth (including other unlicensed and licensed frequencies) a satellite-connected base station experiment was established (Figure 31). This is a significant variation to the classic approach of the Agricultural workflow system; in particular, this approach differs through its unique use of Microsoft Windows IoT core, FLIR automation technologies, and also through the use of lower power consumption technologies (NB-IoT; MQTT). The interactive nature of the LTE telemetry functions and broadband satellite connections that enable the real-time capture of data (32 Mb/Sec down, 4.9 Mb/Sec up, and 588 milli-second ping rate) generated from weather stations for example to validate the accuracy of the sensors used, indicates the system’s suitability for medium to low data throughput (in areas with limited connectivity) to balance the load concerning data traffic, switching IP configurations and API latency. However, questions remain about data security.

AIMS

1. Generate a workflow for the statistical determination of 4G/LTE network throughput.
2. Create necessary instances and pipeline to generate real-time CPU:GPU emulation data transfers over LTE.
3. Assemble operating system specific edge-based devices, including sensors.
4. Deploy and capture data to evaluate the efficiency and determine basic runtime heuristics functionality.
METHODS AND RESULTS

NETWORK WORKFLOW TOPOLOGY AND METHODOLOGY

To establish a new operating workflow that could handle the significant data throughput required to make a heuristic decision specific to a remotely hosted (Boolean) data server a classical network model was taken and adapted (IBM, 1989; Stine, 1990). This traditional TCP/IP M2M approach ignores some of the issues associated with high-precision capture of images related to ‘server latency and network switching speeds that are usually in flux during the upload stage for a cloud computing application (Mr. J. Withers personal communication,

To establish a new operating workflow that could handle the significant data throughput required to make a heuristic decision specific to a remotely hosted (Boolean) data server a classical network model was taken and adapted (IBM, 1989; Stine, 1990). This traditional TCP/IP M2M approach ignores some of the issues associated with high-precision capture of images related to ‘server latency and network switching speeds that are usually in flux during the upload stage for a cloud computing application (Mr. J. Withers personal communication,
14th November 2018). The timely process of spatial analysis and modelling and the non-integrative approach that may render many of the studies non-beneficial due to time constraints are of significant concern in this model. However, the newer 64-bit non-legacy frameworks can allow emulation over the syswow (Microsoft file system), and that includes 64-bit pythonic support in virtualised containers. The standard model can still be successfully deployed (although there are significant issues) (Figure 31).

To facilitate this model and to make an advance at the requirements concerning the next generation of base stations and power switching network protocols, an agricultural-based station experiment was established both in the laboratory and in the field on Western Australian Government land (Mt. Dale field site development, for a Katanning deployment) as part of the ‘Nokia Intros Starter Packs’ and FutureX (Mr. K. Hemmerijckx, personal communication, 14th February 2019). In both instances, the network speeds were tested over a standard backhaul (using a variety of SIM cards provided by the Australian network operators), and a best-case worst-case scenario was used to determine optimal logistics for network traffic (Figure 32). Additionally, considerations were made about the application specifics of the site being rural

![Figure 32: (Left) The Vodafone mobile network provides a .NET API framework that enables network availability and approximations to be gaged concerning the network speeds, and also gives additional (patched) information concerning planned improvements (for example where LTE/5G might be rolled out) or where new towers might be installed to provide additional network coverage in specific bandwidths (e.g. 3G/4G/LTE 800, 850, 900, 1800, 2100, 2400 MHz or licensed 5G bandwidths for instance). This particular industry and scientific community is very competitive, and as such the current bidding for the 5G services has closed (as of 2019). (Right) Using the custom software from the general methods section (a standard Samsung smartphone with root super user installed (#)) can be used to install non officially supported applications from the Google play store on a Samsung devices including the G-Net Track Lite. This is partially a result of the customisations required by network providers wishing to sell their own devices with custom software, but also IDE feature of .NET assemblies. Snapdragon microprocessor architectures support this customisation and in this instance G-Net Track Lite was installed for use to diagnose additional network configurations and thus confirm tower placement or test network strength, latency and data rates. Image Source: The author courtesy of Pivotel.](image-url)
and requiring significant upload data speeds for throughput processing (edge heuristics and digital twins).

Following this, a custom network LTE trailer a Nokia base station (provided through the FutureX program; a collaboration between Bell technologies and Nokia) was deployed, and the capability tested, through the use of both the Telstra and the Optus backhaul network connections. A similar functional method has already been proposed (Murray, 2011); however, not for remote deployments, including satellite connections or with a focus on automation. Accommodations had to be made logistically onsite concerning; the 11m retractable tower, solar panels and battery (that draws about 70-80 Watts), 3G/4G local LTE base-station and server (for switching/security), and options for onsite data storage/processing (Figure 33).

Once online and the connection secured (at the Sydney switch) speed tests were regularly carried out (weekly), and logged and the result of the speed tests used to establish a base level average for which an estimated processing calculation could then be factored into edge-processing, telemetry, machine learning, and A.I. data requirements; and for experimental design concerning agricultural abiotic stress (Figure 34).

Figure 33: (Left) The deployment phase of a transportable 4G/LTE base station with supporting battery power provided by solar panels, can be deployed in under 15 minutes by a single operator. The technician must ensure sufficient clearance when deploying the 11m mast, and that the panels are optimally positioned. Here the technician secures the Nokia base station (BST) to the mast before it is raised. This flexi zone micro BST consumes little power, as such the running costs are significantly reduced without compromising the quality of overall delivery capacity. The BST uses passive cooling and has no acoustic noise output. A typical radio site such as this, requires a limited set of equipment including, (i) a BST, (ii) antenna, (iii) a processor (for managing the remote server connections), (iv) backhaul connection, (v) LAN, fibre optic, LTE modem etc., (vi) compatible network sim card and (vii) handsets, gadgets, modems, routers etc. All site configurations are finalised after the site has been confirmed and the radio design has been established as being able to provide an acceptable coverage level. This tower was deployed at the DPIRD Mt Dale field site and was used to test the connectivity of the system with both Optus and Telstra backhaul network connections. (Right) The storage in this unit can house multiple processors if required for edge processing, and now includes satellite connection. Image Source: The author.
DISCUSSION

IOT SMART DEVICE TECHNOLOGY FOR CLOUD-AUTOMATION

To address the workflow concerning heuristics and edge-based data programming, several Amazon EC2 (Amazon Corporation, California, USA) instances were created, as it relates to Svatos, (2018). The project had a specific agricultural focus for which an environmental instrument cluster was constructed which included a Raspberry Pi 3B+ (Raspberry Pi Foundation, London, U.K.), connected to automation enabled FLIR thermal camera (Power over Ethernet) (FLIR Corporation, Oregon, USA). An embedded .NET API application SDK (including for Windows, and Android/Linux) that builds on the previous research outcomes concerning Svatos, (2018), Svatos and Abbott, (2019), and Svatos and Trowbridge, (2019); was also constructed including using high precision sensors; including relative humidity and temperature.
The Raspberry Pi3B+ module was initially constructed by flashing the Windows 10 IoT core for ARM devices (Microsoft Corporation, Washington, USA). By setting up the FLIR automation software to run through a .NET browser window, live-stream images (of the FLIR output) were captured by the Pi, and the data broadcast through the video input (Figure 35). Following this the device was tested successfully in the field at Mt Dale with the Nokia LTE trailer confirming the setup (PhD candidate from Edith Cowan University Mr. A. Sehovic personal communication, 4th July 2019); for provisioning to Microsoft Azure (for Students) IoT Instance or Android (Google) application software remotely (Google Corporation, California, USA).

To demonstrate the abilities of the Amazon EC2 cloud server; a custom weather station was constructed to capture specific environmental data in real-time over the MQTT client protocol. The instance was customised to enabled connections to AWS IoT Core. ‘Things’ were additionally created, which included API containers with a fixed IP address available at specific endpoints. Device-specific SDK protocols were assigned to the custom APIs and the MQTT client protocol for communications (after provisioning in the AWS server engine (cloud)), data throughput packets were published to the subscribed device topics (Figure 36). “AWS IoT can send event-based messages to pre-determined MQTT topics when specific service events occur, via custom endpoints that allow concurrent connections to AWS IoT. Each ‘Thing’ has a REST

Figure 35: (Left) The FLIR automation lens, and software enables precise calculation of temperature to a high degree of accuracy. With a variety of filters to target features in the field of view windows (1), (2) or as precise points that correlate to specific temperatures indicated through the user API (+). Additionally to the standard RGB colour imagery that the software emulation layer provides, the lens can also be used to map features of the images with a high scale of accuracy (which includes a variety of downstream applications e.g. machine learning or A.I. heuristics based on heat signatures with mapped features; happy faces for real-time situational functionality; essential in airports). (Right) The IoT core utilises the .NET API infrastructure that enables SDK bypass of the FLIR automation software, for pythonic pen testing. Image Source: The Author.
API available at this endpoint (a critical property to insert when using an MQTT client or the \textit{AWS IoT Device SDK}),” (Mr. A Sehovic personal communication, 7th September 2020).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure36.png}
\caption{(Upper left) The variation between the upper and temperature sensors in \degree C for a 10-day sampling period. (Bottom left) The relationship between relative humidity and temperature for a 24-hour period. (Right) the environmental sensor system shortly after installation. Data is sent as required concerning the solar power charging required to power the device. The number of sensors are customisable connected through the \textsc{modbus} of the RS-485 NB-IoT (auxiliary) router (Bolt Corporation, Queensland, Australia). (Right) With the station setup using a preconfigured policy and preconfigured certificates – users are able to seamlessly collect sensors data at the AWS IoT by publishing messages using MQTT topic/s to their “Things”. Here, Mr. N. Hart oversees the completed installation of the IoT weather station. Image Source: The Author.}
\end{figure}

\section*{CONCERNING THE SECURITY OF IOT AND REMOTE 5G AI HEURISTICS}

NB-IoT (Narrow-band IoT) is a low-power wide-area technology that uses a subset of the 4G/LTE standard. Compared to LORAWAN and SIGFOX which are limited to 140 or 280 messages of 14 bytes per day (and are less secure) the NB-IoT can handle a much broader array of data sources and standards. However, concerning the MQTT protocol as it relates to security, there are significant industry concerns that provisioned (ready to use) data packets can be ‘sniffed’ by 3rd party APIs and other devices. This is a concern because how the data is used downstream if there are multiple copies of the same data set, the emulation layers do not have the built-in capability to know the difference alone based on each time stamp. Even with a pythonic daemon, running a batch emulation to check if the script is a real MQTT packet, there is no verification process to tell the difference between a repeat sequence, or multiple sequences of the same dataset; which an actor might use to overload the system or upload false datasets to create connection errors in downstream machine learning pipelines (IBM, 1989; \textbf{Stahl and Wright, 2018}). The Nokia base station and provisioning software were independently switched
at the remote server in Sydney; additional testing could not determine whether in fact if this was a trend, however the recent addition of Broadband Satellite to the LTE with demonstrated speeds that would enable enough throughput for GPU rendering, to facilitate satellite data derived security monitoring in real-time (Mr. N. Hart personal communication, 16th July 2020). Possibly with Boolean hexadecimal based Hamiltonian manifold based on the 64-bit AARCH support of the ARM architecture emulation layer, which is not yet demonstrated by either Apple or Microsoft. However, Google, e.g. (Arute et al., 2019) and probably Huawei are likely candidates to achieve success implementing as such; in their respective domestic and international 5G markets’ and industrial 5G especially with newer real-time sub 6nm chipsets (the current limit).

MANUSCRIPT 3: RECOMMENDATION AND CONCLUSION

Research groups trying to standardise this industry like the Australian Computing Association (ACS) in relation to data-science should go back to the original Bell Labs research handbook and re-evaluate their goals concerning the inherent bias in embedded systems (the beta language and model) before suggesting regulation for any scientific field particularly where genetic and phenomics data plans are being offloaded into government thinktanks, with a particular bent on “ethical A.I.”. Not only does this notion increase the probability of innovation derailment, but creates unfair disadvantages for non-compliant devices, which may be more efficient and better overall solutions. More importantly, these sorts of regulation are known to stifle the brightest young computer scientists (through the author’s own personal experience in Australia).
MANUSCRIPT 4: BACKGROUND SCOPE AND DECLARATIONS

This results manuscript represents the final results manuscript output of the thesis; which was required to fulfil the aims, especially concerning remotely sensed data predictions (Manuscript 3 declaration). Without this collaboration a complete dissertation wouldn’t have been possible. The research in this manuscript was the result of a competitive selection process initiated by Edith Cowan University’s iPREP placement team who selected individual students based their abilities and suitability in business and industry. The collaborative internship that resulted from this competitive selection process provided the opportunity to write up and submit the following manuscript to Soil Science Society of America Journal (SSSA). As such, some of the IP developed is confidential and has been withheld in this manuscript, including (names, addresses, GPS coordinates, certificates and hexadecimal hash keys) for privacy and security reasons. Participation in this project enabled the generation of the automated pipeline concerning statistical data modelling and machine learning.

By creating an automated instance and through mathematical calculus (Jupyter console, python, data-mining, and R statistical programming) and (by the author via the set-up of an embedded machine runtime environment), geophysical predictions based on remotely sensed data were established. This provided an essential link for AI digital twin assessments (thesis aims). The outcomes of this project and manuscript showcase action based research. And demonstrates the importance of industry funded academic collaboration in the development of applied A.I., for use by the building and construction industry (in the Mediterranean climate) to answer specific questions about the accuracy of equations used in engineering calculations. For the benefit of people building new homes.
HEURISTICS ENHANCED SAAS PLATFORM: REMOTE GEOSPATIAL MACHINE LEARNING OF SOIL PROFILES FROM AN ANCIENT MEDITERRANEAN ENVIRONMENT

K. B.W. Svatos¹,², A. Recaldes³, Z. Ahmed⁵, T. Young³,⁴¹ Murdoch University, ²Karl Corporation, ³Curtin University of Technology, ⁴uDREW

ABSTRACT

Raw soil core physical data used in machine learning algorithms with corresponding spatial remotely sensed data is an emerging science. Using data derived from soil core samples previously collected in UTM Zone 50 (Western Australia), Atterberg limits, and remotely sensed data to develop models that predict ground movement (GM), this is the first approach for Australian soils and a world-first for soils older than 200 million years. The model developed reliably predicted GM with 91.1% accuracy. The error obtained from the prediction is within acceptable limits currently used by engineers in calculations concerning soil classification for engineering purposes. Concerning the remotely sensed data analyzed, and accuracy of Atterberg limits method might be improved if additional information on soil structure (layering and horizon) or other variables (seasonal data) can be built into this model. This model can be used to save on construction material costs, reduce the potential for human error associated with data collection and sample manipulation, but also fast-track (by up to six weeks based on current wait times) building approvals while ensuring compliance to the relevant legislation. This platform also reduces the environmental impacts of invasive drilling techniques. A new requirement within sustainable building practices, and associated guidelines commonly used by soil scientists in Australia and America.

INTRODUCTION

The surface geology and geomorphology of soils that habit the Swan Coastal Plain in Western Australia are ancient, highly weathered, and diverse. The parent material, which includes the Darling Range dates to at least 2600 million years in age, which makes the soil physical and geological landscape of these areas, broadly framework silicate-based, iron-rich sands, that gradually increase to a more calcareous mixture near the wave action-affected coastline (McArthur, 2004). Modelling of geological age within this geographical location is therefore a
broad range concerning soil era. And has considerable limitations (physical and data related), which do not bode well for downstream applications, for example, if mined data sources (Armstrong et al., 2007) are considered for standard downstream use in the highly regulated building and construction industry. Currently, the soil classification system broadly used to determine site suitability in the building and construction industry is ground movement (GM), which is broadly based on classical soil sampling techniques and the research, (McBride 2002) as it relates to the physical calculation of Atterberg limits (Table 9).

Table 9: Typical ground movement (GM) values between 0 and >75 (cm) used to help determine soil classification from; A, mostly sand and rock sites, with little or no GM expected. S, slightly reactive clay sites. Only slight GM from moisture changes expected. M, moderately reactive clay or silt sites which can experience moderate GM from moisture changes. H, highly reactive clay sites. Can experience high GM from moisture changes. E, extremely reactive sites. Can experience extreme GM from moisture changes. P, problem site. This can include soft soils, such as soft clay or silt, varying depths of fill, loose sands, landslips, mine subsidence, collapsing soils, soils subject to erosion, reactive sites subject to abnormal moisture conditions, or sites which cannot be classified otherwise.

<table>
<thead>
<tr>
<th>GROUND MOVEMENT (cm)</th>
<th>SOIL CLASSIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>1-20</td>
<td>S</td>
</tr>
<tr>
<td>20-40</td>
<td>M</td>
</tr>
<tr>
<td>40-60</td>
<td>H1</td>
</tr>
<tr>
<td>60-75</td>
<td>H2</td>
</tr>
<tr>
<td>75 ></td>
<td>E</td>
</tr>
</tbody>
</table>

Concerning the calculation of GM used in the building and construction industry (for calculations and legislation purposes (McBride, 2002), several mixed-use models have been presented but with little or no clear focus on the industry requirements concerning non-invasive drilling approaches, or standardization as companies look to move data to the cloud to benefit from opportunities related to building sustainability. More recent research has provided insights and potential database metadata clusters (and metrics) for correlations, e.g. (Sutherland et al., 2014; Dastbaz et al., 2018; Qu et al., 2018), but also have fallen short in relation to industry standards.

The International Soil Reference and Information Centre (ISRIC) SoilGrids (a java-based cloud *.html console API) provides predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100, and 200 cm). Based on the American soil
classification system (taking into account that the majority of American soils are <200 million years old), averages for depth intervals are derived by taking a weighted average of the predictions using numerical integration of the trapezoidal rule (Hengl et al., 2017). This algorithm then provides a generalized surface and subsurface prediction of the aforementioned soil properties based on current geological era correlation data (Hengl et al., 2017). However, where the classification of ancient soils skews correlation outside allowable model tolerances, many or all data points have to be omitted to populate the algorithm map (that user’s access). This omission may also partly due to areas incorrectly reflecting significant differences in era and age between the Australian and American classification systems that does not account for occurrences of soils >200 million years in geological time (McArthur, 2004). An International Soil Reference and Information Centre (ISRIC) spokesperson recently said, “ISRIC is not working on the prediction of soil classes at the global scale. The number of profiles with assessed classification in each of the three systems is not very large; at this moment, it is not yet possible to substantially improve on the class prediction.” And yet, the entire global reference dataset (GPS grid points) are kept on the map grid for use. This non-standardized method (for prediction at the global scale) is also not limited to soil prediction models either. Concerning vector-based algorithms for statistical applications (including for soil), or other quantitative modelling methods including those utilizing machine learning, biases (considering predictive significance) appear to be underreported in the scientific literature yet are increasingly used to explain significance of the methods, e.g., (Louca et al., 2018).

Data-driven machine learning techniques have increasingly been employed for modelling and prediction of the composition and rates of sedimentation (e.g. in sedimentary basins). As such, the existing mathematical and machine learning models for forecasting river sediment deposition is oft driven by non-remotely sensed data without the required complementary ground-truthing for calculating tolerances or absolute significance, e.g., (Qu et al., 2018). This soil moisture investigation utilizes a machine learning approach based on experimental data and Landsat5-thematic mapper (TM) images, specific for, “the Mega-City Beijing.” Qu et al., (2018) aims to demonstrate that remote sensing and unsupervised machine learning techniques coupled with an appropriate validation metric can be employed to quickly forecast regions that are subject to future river sediment deposition environments. “The characteristics of soil moisture content (SMC) … are analyzed for the design and construction of sponge cities…. It can be concluded that the support vector classifier (SVC) method trained with remote sensing
and grayscale data can achieve the highest accuracy (76.69%).” However, without the support vector classifier, it is a fair assumption that the predictive accuracy of such a model would be significantly less biased concerning predictive significance, but also considerably less accurate too (Sheffield et al., 2012; Huang et al., 2019; Awan et al., 2021).

But, to what extent do computer libraries and available statistical visualization, and computational hardware setups allow for predictions (with or without ground-truthing of algorithmically extrapolated data) independently of ‘accuracy’ concerning applied A.I. used in soil analyses? The Python3 geospatial data abstraction library (GDAL) may be used for converting satellite image *.tiff files to *.csv files and R (computer language) is employed for unsupervised learning algorithms including those utilized by A.I. currently. Increasingly the R libraries can optimize numbers of clusters for pairwise plotting of feature bands and cluster validation, respectively (Karmakar et al., 2019; R Core Team 2021). However, where vast distances need classification for soil physical and chemical properties via index correction or vector algorithms; these bigdata clusters create significant processing bottlenecks (compared to genetic data clustering, which also employ this type of approach). These types of models utilize substantial graphical processing unit (GPU) resources, and thus are inefficient or not Turing complete. See Fong et al., (2018), Keight et al., (2019), and Reynolds et al., (2019).

AIMS

1.) To characterize the major landforms, surface features and physical specifications of a standardized set of core sample logs (based on a laboratory database used to calculate GM); specific to Western Australia’s ancient and unique soils including those along Swan Coastal Plain.

2.) To validate the formulated equations and indices using complementary statistical modelling and machine learning methods.

3.) Validate GM soil equation(s) using existing remote sensing databases and software, to correlate/extrapolate GM for areas without laboratory data in the data polygon. Simulate lack of access to the site. Minimize future site destruction.

4.) To embed the kernel into cloud-based container for highspeed computation and software as a service (SaaS) API access.
MATERIALS AND METHODS

VALIDATION OF THE LABORATORY BASED GEOTECHNICAL DATA

Ground movement (GM) values (determined from the accurate conversion of physical laboratory measurements based on Atterberg limits), using the industry-standard described in (McBride 2002) were first completed on 5000 core samples collected from Western Australia’s Swan Coastal Plane and surrounds (Table 9). The raw results data were then uploaded to an online database AWS S3 bucket (Amazon Web Services, Washington, USA). The entire dataset of laboratory samples stored in the AWS bucket consisted of 3000 datasets that were formatted from *.pdf format into *.xlsx and then *.csv. These datasets were also cross-referenced by suburb and general location to remove inconsistent GPS locations from their physical addresses and plotted over the Western Australian lithology map (Figure 37).

The laboratory database GM *.csv files were then deconstructed to look for relationships between the sample observations (based on the theoretical algorithm versus the calculated values), to verify the Atterberg method. Relationships between approximately 30 soil characteristics (from the laboratory *.csv files) and an additional 20 characteristics from the
available remote sensed geo-referenced *.tiff and GPS logged satellite, or online databases (Landsat, Sentinel I and II, and ISRIC) were then determined for the universal transverse Mercator (UTM), Zone 50.

REMOTE GEOSPATIAL GROUND MOVEMENT PREDICTION BASED ON STATISTICAL RELATIONSHIPS

The methods utilized for machine learning and statistical modelling implemented have previously been described (Ahmed et al., 2019; Recaldes et al., 2020). The theory behind the installation and configuration of such implementations for environmental simulation has also previously been described (Svatos 2018). Briefly, the two complementary methods were set-up, and pre-configured to be remotely accessible from a remote secure shell terminal (SSH). The methods included a statistical modelling approach using the QGIS graphical user interface and command-line interface through the QGIS software suite (QGIS Development Team, Bern, Switzerland). And a machine learning approach using a *.py (python file) with pre-configured commands implemented through the command-line of a pythonic kernel and console API, running on the long-term-support version of the Ubuntu 18.04 operating system. To enable near-real-time automation of these statistical methods a pipeline for the baseline implementation (workflow in the cloud) was created. Utilizing Amazon EC2, the instance was setup and installed with access to an S3 bucket containing the laboratory database and remotely sensed raw datasets (Amazon, Seattle, Washington, U.S.A).

From the cloud shell; the statistical models were used to determine GM based on the relationships between soil characteristics and GM (using 80% of the data for training and 20% for testing), the two analytical approaches compiled algorithms for downstream supervised learning assessments (within the GPS polygon). Finally, to determine the effectiveness of the statistical modelling and machine learning pipeline the workflow algorithms were used to see how accurate the correlations were with open source geospatial data; for determining GM (Table 9).
RESULTS AND DISCUSSION

The scientific models developed through this research (based on laboratory datasets of the Atterberg limit industry standards) are the first to incorporate machine learning into GM calculations in Western Australia, and the first for soils older than 200 million years due to the age of soils studied (Figure 37). Based on the statistical modelling approach the best determining correlation variables for GM were liquid limit (LL), plasticity (PL), plasticity index (PI), and linear shrinkage (LS), due to the nature of the relationships between GM and soil physical properties which support its measurement (as expected).

The generalized additive model (GAM) output from the QGIS terminal, which was set for spatial and temporal autocorrelation, with additional smoothing, fitting, weight, and flexibility parameters explained 91.1% of total deviation of the dataset (Figure 38). Similarly, for the machine learning approach, the overall prediction potential for (R2) 0.05 and 0.10 were 65% and 83% respectively.

The prediction potential of both statistical methods supports their use (and the dataset) for making estimates of GM in the determination of foundation thickness (in the building and construction industry); within the GPS polygon, and possibly remotely, without the need for core samples, and additional laboratory analyses. Using the 30 remotely sensed spatially available datasets to determine GM, showed inconsistent results (Figure 39).
Figure 39: The combined heat map of 30 soil physical and chemical concerning remotely sensed datasets. Ground movement (GM) in cm from Table 9, indicated by the red rectangle and its corresponding prediction potential for the UTM Zone 50 (including outside the GPS polygon).

The remote sensing data models that were identified via both the machine learning and statistical modelling approaches do not support the models developed, e.g. (Dastbaz et al., 2018), even though the same Landsat datasets were used in our models. Our models were less than 50% as accurate, which asks the question of the significant deviation concerning similar models used by others, e.g. (Armstrong et al., 2007; Louca et al., 2018; Qu et al., 2018). In our spatial model, the data were not significant enough to warrant the use of the model in its current form with a high enough level of certainty concerning industry standards. Although we were able to predict whether the ground would move or not, more data is needed to advise by how much confidently (without introducing qualitative bias).
Detailed information about built-up areas is valuable for mapping complex urban environments (McBride 2002). Although a large number of classification algorithms for surface areas have been developed, they are rarely tested from the perspective of feature engineering and feature learning for predictions of subsurface soil parameters. Sheffield et al., (2012) for example. As such better accuracy of the spatial model might be obtained if soil structure (layering) and other variables analyzed in future data collections of Atterberg limits (McBride 2002) are factored in concerning the geological effects of time. The ground moves as the season's change; therefore, there is a correlation between this amount of movement and soil type, including the subsurface saturation zone (McArthur 2004).

However, for a significant correlation to be made the model data needs additional stratigraphic observations about the soil horizon, so that 2D soil lithology maps can then be used to piece together a 4D geological time stratigraphic soil map for the creation of larger 4D timestamped polygons (outside of UTM Zone 50). For example, the model gave a better result in classifying movement vs non-movement, which might indicate smaller scale influences. Traditionally seasonality is used in agricultural field modelling where small-scale calculations are improved through the use of field measurements to validate aspects of crop morphology with remotely sensed data (Alexakis et al., 2019; Cai et al., 2019). Significant improvements of the accuracy may thus be obtained when categorical outputs corresponding to site classification (surface water mapping or groundwater bore logs) are built into the Atterberg limit laboratory data collection and geotechnical procedures, irrespective of physical time deviation between measurements. Although this has yet to be demonstrated as effective.

Remotely sensed ‘big-data’ sets in terms of the structural, spectral, and textual features corresponds to the satellites generating the data and is a sophisticated science (Dey et al., 2018; Fong et al., 2018; Huang et al., 2019; Peng et al., 2019; Reynolds et al., 2019). Remotely sensed big-data becomes an essential requirement (if available), but may validate laboratory datasets collected especially where data or access to sites is scare and costly. The model developed from laboratory data is reliable for industry use concerning GM, within the GPS coordinates of the polygon UTM Zone 50 (Figure 37). However, even better accuracy of the spatial model using satellite data might be obtained if additional information is collected for the machine learning pipeline, and updated with more raw soil core data. This is currently underway. With a possibility to improve accuracy, and overall efficacy as per Dey et al., (2018), ARM, (2020),
and Hagendorff, (2020) concerning any perceived bias this new SaaS API may generate from an A.I. perspective, sustainability of legislated building procedures and associated research is an ongoing science needing more consistent, ongoing review.

The success of this type of model can potentially save tens of thousand dollars in construction materials, reduce the potential human error associated with data collection and samples manipulation and up to six weeks of building time while ensuring the compliance of the relevant local, state, and federal legislation. As well as:

1. Allow designers & engineers to prepare better quality and more accurate quotes by providing more information prior to site visits.
2. Save time through less maintenance of on-site equipment
3. Provide a potential for less construction wastage, materials required & site works/preparation. I.e. through cost savings on engineering contingency fees (potential saving of up to 34% of construction materials required).
4. Provide less subjective, more consistent estimates.
5. Possibility for further full data capture & analytics improvements.
6. Reduced down time and bottlenecks within the overall design building and approval process which has been amplified by COVID-19.

Remote sensing big-datasets in terms of their structural, spectral, and textual features according to the various satellites processing the images being generated is a sophisticated science (Dey et al., 2018; Keight et al., 2018; Ahmed et al., 2019). Investigating the character of remotely sensed big-data becomes an essential need to help verify (if available) laboratory datasets for improved model accuracy, especially where data is scarce. These are the first models to predict ground movement in soils older than 200 million years, a first for Mediterranean climates, and a first for Australia and possibly the Southern Hemisphere. The model developed from laboratory data is reliable for industry use concerning ground movement within the GPS coordinates of the polygon (Figure 37). However, even better accuracy of the spatial model might be obtained if additional information on soil structure (layering) and other variables (that may be sourced) are built into the continually improving automated machine learning pipeline with software improvements (ARM, 2019; Hagendorff, 2020; Oracle, 2020). The future of building and construction is now. The success of this type of model can potentially save tens of
thousand dollars in construction materials, reduce the potential human error associated with data collection and samples manipulation and up to six weeks of building time while ensuring the compliance of the relevant local, state, and federal legislation.

AUTHOR CONTRIBUTIONS AND ACKNOWLEDGEMENTS
Tom Young collected the raw data and wrote original algorithms concerning Atterberg limits. Tom Young and Karl Svatos conceived the concept for an automated pipeline for statistical prediction of soil properties (laboratory geophysical soil dataset calculations). Agela Recaldes-Salas and Zubair Ahmed conducted mathematical modelling, based on the requirements of Tom Young. James Adams, Karl Svatos, Kris Zima, and Kate Zima created the instances, including the AWS S3 bucket, programmed in the command-line interface, and managed the team respectively. Karl Svatos programmed the automated Anaconda/Jupyter, Amazon pipeline for the embedded statistical machine learning and wrote the manuscript. The authors declare no conflict of interest.
EPILOGUE PROLOGUE CONCERNING AUTOMATED SOFTWARE PREDICTION TECHNOLOGIES IN APPLIED DATA ETHICS

The methods of data collection and analyses in Manuscript four not only serve the vital purpose of validating the use of online databases for estimations and decisions; the automation process developed concerning embedded (enabled for .NET pythonic assemblies) cloud-based remote shell connections are a testament to the truly unique results and a first for this industry. Thus, validating the aims concerning the construction of an online decision-making platform for real-time analyses, for the building and construction industry. Concerning the data collection and low correlation of remotely sensed data, that was used in the construction of the automated machine learning pipeline; there is considerable evidence to accept the hypothesis on this information alone. A view supported by numerous Google A.I. ethicists. From the perspective of the ethical use of A.I. concerning the use embedded code to extract data or create visualisation images (from the data), however, there is little by way of policy or regulation, and even less concerning data ownership and use with supporting experimental results and embedded code (Stahl and Wright, 2018; Hagendorff, 2020) (Figure 39), which brings into question how governments may legislate these games e.g. drone neon light entertainment. Information is gathered from audiences from which embedded statistical biases for observers based on GPS (e.g. a ‘liking’ for this specific kind of ‘drone show’). Without ever asking for individuals’ opinion’s governments lack the tools for long term policy needed to ensure the safety and security of all its citizens. Although not 100% entirely; it seems that corporations continue to push this ethical boundary (ARM, 2019; Oracle, 2020, NVIDIA, 2021).

Figure 39: Typically lengthy construction approval processes with large scale surveying and data logging requirements (in the building and construction industry concerning regulation and industry standards), can somewhat be automated and fine-tuned, through the use of the methods indicated in this manuscript. Which also includes the use of unpiloted autonomous vehicles (drones) that can not only capture essential data but then use the data to relay visual representations of the data analyses. For example, fog response geographic warning systems. In this image, the night sky inversion contrasts with the megacity buildings which make the neon lights more vivid on the Google Pixel 3 smartphone image detector (and Google Lens app). The code features embedded .NET controls in the Pixel Google Image ‘deep learning’ functionality and a compatible deepfake image container (shown here in Tokyo in December 2020). Image credit: The Author
GENERAL RESULTS
MURDOCH TWINS: CONTAINERISED .NET API BACKEND DATA IMPLEMENTATION FOR REAL-TIME DEEPFAKE GAMES

Independently of the manuscripts to address the hypothesis for the heuristic measurement of latency, concerning the ethics of A.I environmental data simulation bias, a digital twin was constructed. Thus, allowing the combined outcomes (of the aims) to be assessed concerning the hypothesis in an automated real-time cloud-based .NET assembly (virtualised GPU: CPU container) (Figure 40). Each spike represents mean processing as the aggregated sum of embedded statistical calculations that link to the datasets (data lakes) via the programming of the various dataset locations (containers and databases), constructed for each manuscript (TCP/IP nodes). Including for the environmental data (Manuscript 1, 2, and 4), and agriculture data (Manuscript 2 and 3), .net latency (\(\Delta t\)). The statistical visualisations (algorithmic pipelines) (Manuscript 2) (Appendix 3) were applied to the cloud-based programming platforms (Manuscript 3 and 4); Demonstrating that the data capture and statistical modelling workflows (2016 → 2020) can be visualised and processed in real-time, (via a real-time LTE statistical heuristics application).

The following snapshot of the “MurdochTwins- Digital Twins Microsoft Azure” pipeline was assembled to process the transfer and analysis of the .NET data stream (Figure 40). Images over the LTE network up-link to the cloud-based server were demonstrated achievable in terms of the FLIR automation for satellite application (Manuscript 3), this application concerning plant-health is a first. The programming language and GPU kernel (to stitch the three types of images together was developed for a MATLAB .NET API thus useful for calculating the grain yield based on ‘plant health index’ and associated imagery. This real-time model achieved a simulation of real-time grain yield data (Manuscript 3, declaration) before the construction of the digital twin. Several providers of cloud-based software decision-making tools are currently available for an off-the-shelf agricultural-workflow-system, including Google Analytics (Genomics), Amazon EC2 (AWS-Kinesis), Microsoft Azure (Digital Twins). For simplicity, either of these providers has off-the-shelf software workflows for customisation. Pawsey Supercomputer (Bentley Western Australia), provides access to instances hosted on their servers with CPU: GPU computation clusters, however, the portability and speed are limited (although Pawsey offers a cost-effective system). It is envisaged that portable instances can be developed on Amazon servers yet the security features that link the .NET backend to the API interface need manual rerouting.
As such, the automated platform created in manuscript four serves the purpose to show how such an instance can be applied in a cloud shell platform, which was subsequently able to be implemented in the digital twin. The statistical result was a low correlation with remotely sensed data, as explained in manuscript four, which, for completeness (assumed) that the same effects concerning the yield-related ‘plant health index’ were evident. As such, this sort of implementation is the first (the author knows of). The main result of this digital twin is its uniqueness (of the application) that it is not limited to individual users (anyone with an email...
account can be easily “linked”). The Murdoch University IAM *.edu roam network are fully implemented in Murdoch Twins, meaning that the .NET clusters are not limited in their connection implementations, such as the way IBM intended it to be in the 80’s when the 64-bit architecture was developed for example Intel i860 (IBM, 1989; Free Software Foundation, 1991). Although the functionality of a multiuser approach is somewhat limited (Table 10) at the front end application-level, statistically the IAM allows bash and cmd functionality across the network remotely (Figure 41).

![Figure 41: IAM user access control and multiuser permission control of ‘Murdoch Twins’ configuration settings protocol to customise and assign the data inputs, or assign tasks required based on IAM requirements. In this instance, confirmation of A.I bias in environmental data used to make ethical decisions, concerning a range of species based user input data. Image Source: The author.](image)

Table 10: Because the use of sensors and modules can only account for the direct influence of environment as it relates to any given species (under assessment) there is scope to assess the latency in terms of identifying the potential data/analytical pathways to realising each outcome based on its method of assessment, the potential risk factor and the data source pools. Quantification of the digital twin latency effect (+/-) of the possible contribution(s) as it relates to method of assessment / coding runtime and its associated risk (0-3), is ranked in the way it may have contributed to the time lag effect displayed in Figure 40. The table represents the real-time decision tree snapshot of a deepfake analysis relative to the time lag latency effect Δt from each data pool sources (used in the manuscripts to server the data in their respective instances).

<table>
<thead>
<tr>
<th>Digital twin latency effect (+/-)</th>
<th>Method of assessment / coding environment runtime</th>
<th>Risk factor (0 zero, 1 low, 2 med, 3 high)</th>
<th>Data source pool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detected +Δt</td>
<td>Python / R, Unix</td>
<td>2</td>
<td>Amazon AWS</td>
</tr>
<tr>
<td>Detected +Δt</td>
<td>C#, Unix</td>
<td>2</td>
<td>Microsoft Azure</td>
</tr>
<tr>
<td>Detected +Δt</td>
<td>Java, Unix</td>
<td>2</td>
<td>Google Cloud</td>
</tr>
<tr>
<td>Detected +Δt</td>
<td>C, C#, .NET</td>
<td>1</td>
<td>IBM Watson</td>
</tr>
<tr>
<td>Undetected –Δt</td>
<td>Colbol, Unix</td>
<td>3</td>
<td>Alibaba Cloud</td>
</tr>
<tr>
<td>Undetected –Δt</td>
<td>C, Python, Unix</td>
<td>3</td>
<td>Pawsey Cloud</td>
</tr>
</tbody>
</table>
Concerning the efficiency of the system there several concerns unrelated to the functionality of the twin itself, these relate to the evidence that Gaussian ‘pseudo-random signalling’ effects the collectability of embedded source-code derived, raw pytonic environmental biophysical measurements. A result of this observation is inefficiency in FPGA systems processing at the core demonstrated in the following penetration test (Figure 42). The main factor contributing to environmental variation in confirmation bias assessments concerning ‘big-data’ that are used in ethical assessments is the assumption based on a 50:50 ratio rule (that also holds for genetic colour probability distribution). That of increasing chance with increasing simulation. The uncertainty that increasing probability confers to an increasingly larger number-net (assemblies), via statistical analysis (for even spreads of the probability distribution); summarised here (Figure 43).
In a recent publication “Enabling a New Digital Era” Bell Labs outlines how it sees this future unfolding and the key technological breakthroughs needed at both the developmental and systems levels. But more importantly concerning cybersecurity, there is no dedicated pathway concerning changing the network and systems (in terms of innovation required) to realize the technological revolution that will be the essential product of this new digital future (Weldon 2015). Deepfakes are essential. How data and environmental data is collected and transferred does not require smart technologies to securely verify the source as long as the source is itself physically secure, concerning trust, and the ethics of deepfake games (Table 10, Figure 44 and 45).

Figure 43: This digital twin image is emulated based on the original image taken at DPIRD in South Perth in 2018 of a ‘white gold’ grain head and inverted into a negative image to simulate it’s opposite (it’s identical doubled haploid clone real life twin; ‘black beard’). The head image was taken originally for use as part of the digital twin simulation, due to the DH population being related to colour with a 50% recombination ratio. The grain was grown in the glasshouse at South Perth, measured approximately 15cm in length and was estimated that under the optimal growing conditions (achieved in the glasshouse, the result solely of the fertiliser and trace elements, watering regime, light intensity, relative humidity, temperature, and O₂:CO₂ ratio, and soil) the maximum grain yield potential for this particular head is thus able to be determined (via heuristics data lake estimate specific to API climate environment). The image: a GPU inverted clone image is a statistical derivation of itself, concerning both the digitalisation and in its physical real life existence. Owing to the A.I. twins having both the white and black traits digitally (and the supporting real life germplasm data for both including the whole genome sequences) this game is to determine which one is real because only head was photographed. One is a deepfake, can you find it? (look right). It’s about trust. Image source: The Author.
Elastic IP addresses released. Elastic IP addresses 18.182.186.231

Figure 44: Concerning the IP addresses linked to the Amazon AWS EC2 server instances that were used throughout the entire course of this research (that was created by the author that was partially used to collect all the data for this project), including VPN’s (for white-hat protocols while overseas) (Mr. A. Sehovic personal communication, 18th December 2019) the elastic IP address was released in March 2020. The initial US support provided throughout all the experiments, and manuscripts (these instances) was altered to the Sydney switch by the author shortly after removing the applied security protocols (Privately linked to private IP addresses). The research continues (Appendix 7). Image Source: Karl Corporation

Figure 45: Briefly in relation to the ARM trust manifesto (ARM, 2019). Even if we are to take their statement on face value alone, the assembly source-code layer as it relates to a programming language like python which has been around since the late 80’s is unfeasible concerning both data trust and security (green oval) (IBM, 1989). This circle indicates concerning AI and trust that the entire assembly source code would need rebuilding from an original ASM. Original source-code assembly disks compiled for custom kernels with MS dos compatible architectures are now rare. There is a reason. The computer industry has a very long history on questionable behaviour; one does not have to look far in social media policy disclaimers to find evidence of unethical data use with questionable policy reasoning regarding the ethical reasons used to collect data. But people happily give these companies their data, including farmers, scientists, governments, and the military. The assembly ASM is not built on an ethical understanding of trust that is guided by some ethical manifest document. It is a quantitative piece of source-code. Image Source: Karl Corporation
GENERAL DISCUSSION
CONCERNING THE HYPOTHESIS OF DATA-DRIVEN, MEDITERRANEAN, A.I. SIMULATIONS AND THE ETHICAL IMPLICATIONS OF EMBEDDED QUALITATIVE BIAS IN DIGITAL TWIN DEEPFAKE GAMES

The data presented in this thesis is chronologically complete as follows; Svatos, (2018), Svatos et al., (2018), Svatos and Trowbridge, (2018), Svatos and Abbott, (2019), with additional outputs concerning the research aims in manuscripts three and four, appendix 1 through 7, and Svatos, (2011), and Svatos (2012) respectively. The following general aims are stated again here for clarity:

1. Develop a case for the examination of ethical principles surrounding digitalisation and automation of scientific workflows via heuristic algorithms (for digital twins) (Review).
2. Develop high-resolution imagery and statistical techniques to enable heuristic measurements for a range of field/glasshouse/laboratory experiments.
3. Develop a real-time assessment workflow for processing mathematical algorithm measurements from a range of laboratory and field-based data source observations (phenotype and environmental data sources).
4. Implement and test a heuristics IoT workflow for captured data in laboratory, glasshouse, and field trials to determine accuracy and efficiency concerning variation.
5. Launch A.I. digital twin for real-time (Δt) deepfake game.
6. Create deepfake.
7. Run game, measure trust response then release the IP address to end the game.

Throughout the thesis, a clear focus has been on the ethical collection of data concerning its use in predicting causality; originally with the intention of an embedded A.I. implementation (for a digital twin). The data collection and the means described for presenting it are a clear distinction, yet the overlap (and potential for oversight) especially in computer simulations, cannot be overstated (Freedman, 1995; Greenhalgh, 2002; Svatos 2018). Manuscripts one and two set-up unique laboratory and glasshouse, big-data statistical workflows (data lakes) for simulating ethical outcomes for hairy marron (via isotherm visualisation) (Svatos, 2018); and dairy cattle (concerning microbiological gene interactions) (Svatos and Abbott, 2019) (via the statistical visualisation program and algorithms created) (Appendix 3 preamble). While manuscript’s one, two, and three serve the purpose of highlighting issues relating to the requirement for LTE/5G real-time industry-specific solutions, encountered and dealt with in Manuscript three. Concerning governmental responses and legislation with respect to
environmental data and its ethical collection and use, manuscript four bridges the significant flaws in visualisation strategies, by taking a machine learning approach on a large data lake through a targeted industry focus. A response is presented in manuscripts one and four to validate the workflow regarding a perceived requirement to explain significant variation in environmental datasets raised by Douglas et al., (2019), however, what all of the environmental data collected in the thesis highlight is a broader variability in modelling whenever data scientists try to predict cause. Transcription data and genomics analyses only make things increasingly difficult, expensive, but more foundationally requires decades of dedicated study to understand. The renaissance in data-science is the opposite of this pursuit. The industry-related projects in manuscripts three and four accurately represent the aims in terms of what was achieved but highlight the significant data-centric focus (Svatos et al., 2018; Svatos and Trowbridge, 2018 and Appendix 1 - 7). More significantly, these reflect ethically sourced data sets (and metadata) concerning data lake generation and shows how these data can link to statistical outcomes and support publication-centric research collaborations, e.g. Long et al., (2018) which are unfortunately sometimes not centred on the ethical acknowledgment of data-sources. Where data ownership is concerned, collaboration outcomes can be increasingly biased towards their dataset collections, because data is only about people. The issue of data ownership concerning Tibetan barley remains today (Manuscript 3). A cultural calamity concerning the full realisation of applied artificial intelligence in barley population control and management (Manuscript 3). The invention of the deepfake image, the path of least resistance concerning the increasingly challenging and complex biological interpretation of explaining variation in environmental statistics relating to yield. The game; a way of ethically showing how such instances arise in real-world scenarios and the digital-twin a simple way for measuring responses in real-time to see if a trust relationship could be established by having the reader/target “look right” when asked during the game.

The general methods and results sections reveal statistical outputs concerning the ethical modification of chip architectures to support the creation of a digital twin and corresponding deepfake imagery (based on phenotype, genotype, and environmental data and meta-data). Overall, the supporting data lakes for all manuscripts were focused on Mediterranean climates, and therefore give significant weight to any counter-argument that; variability in A.I. modelling can be eliminated by using increasingly more data to create more sophisticated algorithms that utilise more powerful machines to find a greater P significance based on trained data. An
objective view that will ultimately fail a Turing test concerning A.I. prediction because the number of potential solutions is always increasing (even if there is an equilibrium situation being established). It was Bohr’s realisation. “The problem of biology as it relates to physics.” A view that has been echoed by numerous academics and professionals who were consulted during this research; yet for some reason, the thought experiment only considered significant when modelled objectively—a subjective view raised by Freedman, (1995) in its very own nature. Even with increasingly sophisticated microclimate sensors, more elegant equations, and potentially even a sub-three-nanometer (real-time) chipset, e.g. a possible future derivation of an ARM Cortex-R 64-bit real-time chip, (and associated computational processing; time-scale specific \(t\)) will still have a significant impact on the predictions themselves. The natural ebbs and flows of \(\Delta\) with respect to inherent latency will always have quantitative variation due to Boolean dependencies, and a ‘flat-line’ may only occur if the system is shut down (or if a quantum equilibrium system is established). Data is not part of humanity; it is only part of code security in its current use. Whose data is it?

Therefore, based on this information, there is enough evidence to accept the hypothesis. That;

Digital twins can be embedded and launched in AI manifolds for the statistical analysis of heuristics data, and for correlation and extrapolation of predicted outcomes to make ethical assessments.

Under increasing variability, predicted results based on environmental data sets used in ethical assessments may make artificial intelligence-based computer instances biased towards those environmental variables and data, and leads to ethical use of deepfakes in the current geopolitical landscape.

ABOUT THE NOVELTY AND AUTHENTICITY OF THIS RESEARCH THESIS AND ITS MANUSCRIPTS

There are several scientific firsts concerning this research. Through the development of hexadecimal hash codes on micro SD cards and a file structure database *.NET, application software/hardware implementation, a significant step was made concerning biophysical causality being appropriated to statistical objectivity. As such digital twins and in particular ‘Murdoch Twins’ represent a small step forward. Applications include new digital-twin
solutions for genomics in agriculture and medicine but may also include environmental monitoring or other technical systems with significant (big) data sources. The automated platforms created in this thesis used to test and run real-time data simulation software solutions with a focus on ‘pseudo-random’ Gaussian signalling (discussed and measured in the general results concerning bio-physical A.I. ethics) are a scientific first.

The creation of an IoT based environmental sensor dashboard system based on the independent research (methodology) that are summarised in the general results (Murdoch Twins), and based on the general methodology is a scientific first for real-time genetics and informatics concerning the question of ethics A.I. and real-time game simulations. That where others have utilised a similar approach regarding similar data, questions about data ownership remain, e.g. (Reynolds et al., 2019), which validate the case for a new hypothesis. No known tenet with independently researched student-owned data exists with a complimentary set of 430 unique genetic backcrossed (DH) clones, and an entire suite of supporting environmental data concerning a species colour (Tibetan-Australian barley) exists with respect to A.I. and thus is the first such study to consider the ethical informatics practices with geopolitical considerations surrounding a unique Tibetan barley (the first involved in deepfake a game simulation).

That a remotely located base station can transmit enough data to enable real-time responses to plant stress (or any ‘stress’), (based on a serverless cloud-based machine learning pipeline to a secondary remote location) for rapid automated machinery response concerning gene-specific trait architecture is now a demonstrated concept. Real-time GWAS (Svatos and Trowbridge, 2018). However, there are still significant bottlenecks that need to be overcome from an ethical trust perspective, and concerning the epigenetic components (Appendix 1 and 2). Statistical methods of instance creation and automated, remote-processing of this type of heuristics data (Manuscript 3- Project 2; in real-time) is a first for private, environmental and agricultural, satellite-related, research in Western Australia, and possibly Australia with wide-reaching application potential.

For example, manuscripts two and three that include the evaluation of sequencer derived data validation would have benefit from this infrastructure (Svatos et al., 2018; Svatos and Abbott, 2019). Concerning manuscript four’s A.I., the machine learning pipeline developed that was tested through spatial data analysis; is a first for Mediterranean environments and a first for soil
older than 200 million years in age. All novel achievements made possible through the author’s research efforts and supporting teams.

‘Murdoch Twins’ very nature focuses on customisable solutions for software engineers or scientists; similar solution architects have often overlooked vertically integrable scalability in design-feature, security planning leading to significant limitations including non-standard production line ‘end of life’ support modelling issues (futureproofing issues). And thus, the most significant opportunity that a digital twin might provide may also by its very nature be used to knowingly be used to discriminate based on computational time limits, factored into warranty or product disclosure statements. Current calculations of large supercomputers may take up five years to build and implement (Arute et al., 2019). It is a matter of trust. A Turing-complete system must be able to complete the calculation.

And yet the challenge is that ethically, assessments do not always follow a standard pipeline either. When building a pipeline for ethical evaluations that are to be done via A.I. machines, the nature of the data at the edge needs its potential biases addressed before the data can be collected. However, more recently, machine learning pipelines and data scientists are not concerned with the sources of the raw data, or its ethical meanings, including those that have random multipliers embedded in their routines. Their pipelines are not built qualitatively in mind. “An obvious metric for evaluating the performance of any simulation algorithm can be simply described as some accuracy measure vs. some cost measure.” Increasingly time limits are applied to both the collection of essential data and its qualitative interpretation. However, simulation of environments cannot be guaranteed to be correct and repeatable without initially considering as many hypotheticals as possible, e.g. (Pozzi et al., 2013). To categorically rule out all quantitative bias in the generation of statistical outcomes concerning A.I. The most fundamental physical/chemical simulations for multiple environment calculations cannot be consistently verified. “Further classical simulations and device implementations are needed to provide better insight into the numerical behaviour.” Grimley et al., (2019) on quantum systems.

Multiple big-data (climate, satellite, agricultural, genotype) integration with heuristic algorithmic prediction capability has typically been evaluated by both Lagrangian or Hamiltonian statistical approach (Grimley et al., 2019; Thompson et al., 2020). Some examples
include (Gibbs, Bayesian, MCMC, Metropolis-Hastings). However, the Euclidian distance more increasingly has been implemented through ‘cloud-based’ scalable virtual machines, and to what extent do immeasurable physical limitations in the available data, limit the correlation potential of such approaches concerning complementary datasets, and their derived Euclidian indices?

CORRECTING THE FLAWS OF MODERN APPLIED DATA SCIENCE

Non-statistical heuristic big-data analysis requires significant analytical and scientific knowledge, thus estimating anthropogenic environmental fate, with respect to agriculture, water sources, and biological and chemical datasets fits into this domain. When people talk about incorporating gene pools into machine learning statistical methods and calculations (e.g. for determining the probability that a mutation might occur in a plant biology experiment), the exact process that defines phenotype and its measurement and may well be out of reach, due to the complex nature of evolutionary mechanism itself as described by Gaglino, (2015), Thellier, (2017), and Hanson and Skinner, (2017).

By setting up base stations for GPS tagging of field-based plant measurements (Figure 29), validation of desired plant characteristics could be used to independently verify to ensure the correctness of fit to UAV captured datasets. Independent datasets such as topography maps, soil type, and climate data can then be integrated to help explain the variation associated with the phenotypic measurements (Figure 37). Dependent on the resolution of the UAV data, models can accurately and efficiently then zoom in on areas of interest in the landscape and process genetic level accuracy concerning abiotic stress or biotic stress and using this data pipeline make decisions on plant health or treatment if required (related to grain yield) (Figure 20, 25, and Table 7, and 8) specific to the genetics, e.g. (Manuscript 2).

The use of this technology however, also has its challenges and critical tolerances with standard errors that are necessary for significant objective value correlation. Part of the concern using imagery software and digital lens photography that require regular servicing are the inaccuracies that cannot be factored into models (on the number of real solutions). Additionally, where models use error correction algorithms for determining the significance of telematics tolerances. Foundationally, statistical limits are at the forefront of this argument. And at the centre of statistical limits concerning computer simulations, are the hardware-software interfaces. The
current limitation of technologies in digital computing includes a recent transition away from
legacy BIOS firmware architectures supporting 32-bit processors, to 64-bit or 128-bit by
companies looking to capitalise on the latest advances in microprocessor technologies. While it
represents opportunity, it also ensures complexity. Manufacturers state the legacy firmware’s
are mostly compatible via cloud-based APIs however incompatibility is a widespread complaint
in the big-data industry (Figure 42). A significant challenge facing the A.I. industry, who
seemingly think that emulation will solve the issues, and implies that a broader concept of
Euclidian distance is required to incorporate Gaussian pseudo-random signalling (for example
Bluetooth® Low Energy) into Hamiltonian statistical heuristics. In fact the solution has been
already hypothesised in Greenhalgh, (2002) (with proofs) and used in the programming of an
application and used in Svatos, (2011; 2012; 2018) (Figure 10 and 11) (Appendix 3),
categorically ruling out ‘a priori’ by others.

Realtime decision making on smart devices (phone, watch etc.) are already available; however,
the API is an interface to a web-based front-end application which has the GPS coordinates (of
the trial as well as the GPS location of the phone) to provide real-time information as the person
moves within a field trial (with their phone) cannot easily be mapped to the physical location
via physical geo-location alone. Newer chip technology (more cores including GPU) enhances
the accuracy and data transfer rate of connected sensors integrated through LTE/5G, and cloud-
based APIs via backhaul connectivity, but the next generation of software/hardware
communications (M2M → IoT) requires a major assembly overhaul with billions of lines of
source code at the core (Garfinkel et al., 2007). This is still unaddressed in 2021 and with no
realistic plans to do so by any of the major software manufacturers. Recent multi-cloud
investments by the US Government confirms this assertion.

ON THE PERCEIVED FLAWS IN THE ETHICAL TENET OF SIMULATION
METHODOLOGIES (AND THE METADATA ARGUMENT)
There are many digital simulations in research studies that seek to clarify and prove
environmental relationships concerning genetics. Yet these suffer from the same form of bias
as documented in this thesis. This bias represents a considerable challenge not only for scientists
but also industry who seek to maintain and build trust relationships through the use of scientific
tools and assessments through the use of embedded .NET source code repositories, e.g. Github-
Karldroid (IBM, 1989; IBM 1990; Johansen et al., 2016) (Figure 45). The data tables and figures
presented in each manuscript represent the current state of the art, both in terms of the statistical capability of software systems and in terms of experimental data collected from the remote sensing perspective (Figure 11, 13, Figure 38 (unpublished)). Another bottleneck is in the understanding of molecular genetics principles as it relates to allowing for non-biased machine leaning in A.I. yet, even in the automated remote sensing field, (as attempted in determining below-ground effects of soil properties based on satellite imagery), the approaches require many supporting datasets. The data do not allow for statistically significant assessments to be made alone. The containerization of server instances for remote shell processing has always been relevant to the field of environmental science as are the meta-analyses that can generate meaning from said containers (database systems that store reports for environmental auditing including other ISO:140001 compliance monitoring systems, e.g. Trim4D database, MySQL).

The comments and suggestions raised in Douglas et al., (2019) on Svatos, (2018) are hardly ground-breaking. Not only do the comments highlight the need for additional computational strategies concerning data volume generation potential (raster layers that can be created with respect to environmental data) as shown in manuscript four; but also indicate that the traditional scientific methods (used as part of their rebuttal strategy) also face common challenges concerning the ethical use of high throughput technologies and data-based modelling of biophysical systems. Their model suggests that they did not allow for tolerances; by asserting their methods (concerning mathematical measurement) are justified by data without even measuring against the hypothesised species originally targeted in Svatos, (2018).

One crucial factor often used as a counter-argument includes ‘potential microclimate effects on genetics’ and more massive scale microclimate occurrences concerning phenotype data variation (the collection that influence trait measurements below or above the ground), and supporting environmental metadata; sometimes referred to as GxE (genotype x environment) interaction. Referring to Geiger, (1927) on the measurements made by Kidd and West, (1918), Heller, (1921), and Harrington (1932), concerning the algorithmic environmental sensitivity measure developed by Palmer, (1965) (Appendix 2). Subsequent research by Abbott and Murphy (2007) Rahman et al., (2015) and Thompson et al., (2020), have found that influences of microclimates on both high-resolution phenotypes (speciation) but also in relation to phenotypic measurement platforms (Equation 1). Attributed to causality (with objective mathematical statistics), the models are only as good as the quality of the data, but all fall short
outside greater measures of significance. That where established principles, highlighted by Jones, (1985), remained ignored mainly as hypotheticals, the notion of horizontal gene transfer in biophysical engines for prokaryotic and eukaryotic organisms remains valid 35 years later. The idea that a hypothetical bio-physical genetic mutation based on an experimental method (with variation attributed to GxE) for which an algorithmic explanation of climate-induced phenotypes; can be computed by A.I through a quantitative model without requiring qualitative interpretation is biased. Because even at the silicon layer variation effects calculation and is part of a system being used to measure the trait (Figure 42).

THE SPECIFICS OF HARDWARE IMPLEMENTATIONS CONCERNING HEURISTICS WORKFLOWS SHOW PROMISE. BUT THERE’S A CATCH!

In the thesis, a range of SOC and FPGA were modified (via advanced kernelisation io implementation) and rolled out across multiple devices to test flexibility and accuracy about the embedded kernelization architecture via the development of a range of statistical performance simulations. This heuristic estimation (kernelization process) and modification were statistically tested using a cloud-based API, and data island approach. The manifold assembler was embedded for security into the system.io over .NET using a pythonic discrete calling C assembly function, for a range of analytics, analysis GPU and CPU virtualisation/visualisation, and for automated calculations (Figure 8 and 42). A theoretical modulation of the kernel was tested for scalability across a standard array of microprocessors found in Intel and ARM 64-bit type architectures (typically AARCH, or variants) (GitHub: Karldroid). The scaling for compatibility over three supercomputing platforms was utilised with a variety of standard and run-time operations typical with core OS functionality (Figure 42). Real-time prediction potential across multiple nodes and bootstrap islands or a Boolean logic gate channel for serverless genomic prediction was performed via a latency assessment for a heuristic estimation (Table Figure 40).

In relation to connection issues, and concerning latency ebbs and flows there are multiple examples where supported hardware, operating system, IDE, kernel, and stack can be used to diagnose connection issues, (through universal three-way authentication system enabling real-time TCP/IP monitoring) for example. However, the typical way to develop the .NET framework is to bypass the login credentials by exploiting the IDE itself (IBM, 1990). In this respect, an associated software SDK for the programming of the digital twin itself could have
been used to ascertain if the ASM and development of the .NET architecture that supported the IDE (including the slave), were customizable enough in its current format. The requirement for a 32-bit runtime environment was necessary (at that time) due to constraints of including a .NET framework, containerised runtime, Windows .NET certificate implementation over ARM via FPGA. However, these licenses have now expired (Windows 7 .NET). Microsoft is yet to update its policies concerning new iterations of their certificate hash keys for the 64-bit legacy ‘syswow’ runtime emulation layer, (linked to South American operations).

In any case, attempts were made to establish a stable operating system that could handle the ARM 32-bit runtime over the 64-bit emulation layer, for instance, via virtual box (Oracle, 2020) and then utilizing the GPU parallel architecture to virtualize the 32-bit image outputs directly out of the container and into a virtual emulated Javascript node. However, the legacy boot module and the kernel support for post UEFI firmware were not compatible with the system at that time, and the IDE couldn’t be utilised within that framework. On multiple instances, the kernel failed to boot or was not responsive to the standard flashing commands. For example, recovery, config.sys or even simple *.exe or *.dll implementations, to containerize the pythonic interface to enable a 64bit .NET emulation layer over the ASM specific to the Bluetooth framework.

Upon this discovery, APIs were constructed using the visual studio IDE for C+ and .NET assembly which was supposedly supporting the .NET architecture for Windows 10 64-bit emulation layers. However, upon installing the pythonic *.dll over the C libraries that come embedded with the Windows 10 OS, it was discovered that the UEFI could not use dual boot for this implementation. This is significant because dual boot virtualization is a requirement for any standard runtime including in Unix (Macintosh), Linux, or any 64 -bit emulation layer attempting to virtualize over the GPU (e.g. for MySQL).

Given these difficulties, it can, therefore, be established that the best method was for 32-bit, however, given the operating system requirements post-2020, the 32-bit emulation layer for ARM (Raspberry Pi) is not supported. And as such an interface was not established other than a Docker runtime. Eventually, even with updated libraries and a newer version of the IDE and SDK, the issue persisted, in terms of timestamp and battery drain issues (Figure 42). The battery drain issues are probably due to firmware; however, this is only a probability and not a certainty.
The main reason for this may be due to the environmental data generated not correlating with the run time as expected. Multiple support vector algorithm outputs were made to determine the source of the battery issue; however, the non-collinearity in the spatial distribution of the amplitude corresponded to a diminished operating consistency. Which also included additional heat generated, and lead to the device drain increasing when decreasing the frequency of repetition (latency).

It is a possibility that with an upgraded kernel and assembly that the data generated would be sufficient in operating at the current support levels, however, it is highly likely that additional modification creates additional noise, that will lead to larger ebbs and flows by the twin. As such, the development of the sensor module requires an assembly overhaul starting with the IDE specific to 64-bit ARM development standards (in the penetration test). Microsoft is yet to configure these as of 11/07/2021 although the newest revision of Windows 11 using the ARM chipset shows promise (Jensen Huang, Founder and CEO, NVIDIA, personal communication; GTC 2021 Keynote [S31895]). There is no doubt that an embedded pythonic architecture could be used to alleviate this issue, however at the time of publishing this thesis the limitations of implementing the workflow in its currently available hardware configuration, related to compatibility and the trust manifest were too significant a limiting factor to continue the development (Table 10 and Figure 45).

THE EFFECT OF IMMEASURABLE FACTORS ON STATISTICAL HEURISTICS AS IT RELATES TO DOWNSTREAM QUALITATIVE INTERPRETATION / DEEPFAKE VERIFICATION

The reality is that there are too many molecular and underlying genetic processes that cannot be measured through the use of sensors and probes alone. Concerning A.I., all attempts will create bias in the methodological approach of the scientific hypothesis test (even for the most classical of industrial systems). The use of nitrogen to increase crop yields has had unprecedented success (in commercial agricultural uptake of processes associated through the Bosch and Haber process), yet, it has always favoured industrialised countries, and anthropological nitrogen is a significant threat to natural and human-made water sources. In building A.I., industrialised economies may diminish the water quality without knowing where or how, by merely trying to reduce loads. Ethical A.I. bias contributes to compounding effects for scientists attempting to minimise loading and instead of finding all sources of loads, and
limiting the inputs concerning the endpoints, the issue of ever-diminishing returns and lack of a consideration of the broader problems do not fit the classical equations and are thus overlooked or the data removed “cleaned” from models after qualitative interpretation. The strategy is known as divide and conquer in A.I. e.g., (Huang et al., 2020) and because “at present, there is no defining set of ethics to follow” (ARM, 2019); this is concerning because the assessments that will eventually take over classical models (due to the incompatibility of unsupported computer architectures) classical theory may be overlooked. Climate change is a similar threat concerning the potential for data manipulation via deepfakes, but highlights a broader issue, concerning public perceptions of data visualisations.

From the perspective of environmental sciences and pollution research Svatos, (2018) highlights a “gradual decline”. Whereas manuscript two proposes traditional PCA heuristics visualisation to aid responses, and manuscripts three and four develop this notion into practice. In selecting Tibetan barley, an attempt has been made to ethically distance the research-orientated goals and aims from any form of bias. There can be no discounting the importance of haploidy in determining the ethics of cloning experiments (Zhang and Li, 2016). The point is, A.I., is not about selection at all; it is about the plant response measurement potential in real-time.

In barley abiotic stress significantly affects many plant phenotypic responses, including those attributed to yield and productivity (Rao et al., 2016), raising distinct phenotypic responses (Rey et al., 2016). However, the complexity of molecular events in signalling pathways (Bobadilla et al., 2016), and the responses involved in adaptation remain unclear (Engineer et al., 2016). Molecular approaches can accelerate the understanding of tolerance in plants and aid in the development of tolerant crops because plant breeders can make more significant genetic gains to deliver improved varieties more efficiently (Mickelbart et al., 2015). However, the establishment of an association between genotype and phenotype in abiotic plant studies is still a very challenging area of science (Wehner et al., 2015) (Table 2 and Table 3).

Concerning new varieties (e.g. Tibetan-Australian barley) these data and supporting publications infer that positive interaction between complex traits and yield should be measured by proportionally sensitive phenotypes, that can be mapped to the more rigid genetic structures; where the genes are not traditionally considered active concerning selective pressures (The
Royal Society, 2009). Doubled haploid clone populations are rapidly being used to help discover the relationships where phenotypes do not explain variation. However, these publications also point to the lack of consensus and highlight the need for quantitative approaches. Given the challenges, it may be easier to embed in source code data the sum contribution to create multiple deepfakes with supporting meta-data to attempt to influence markets via encryption and VPN (Figure 43 and 44). A practice that data security organisations are already aware of—embedded qualitative bias.

USING COMPLIMENTARY DATASETS TO BUILD VISUAL HEURISTICS-BASED DECISION MAKING A.I.

The comprehensive assessment of the datasets used to build the digital twin, and the subsequent analyses demonstrate both the flexibility and scalability of using such methods to analyse big-data sets (Figure 41), with multiple sources and statistical tolerances. Of course, not every assumption about the correct techniques can be discounted. However, it seems likely that where environmental data are being used to derive statistical hypotheses, there will always be bias no matter how ‘learned’ the data may be.

The accuracy of the sensors and deployment due to the targeted arrays of sensor data that can be generated is now being studied, and marketed by multinationals, whereas previously, this only extended to frontier research groups with ‘blue sky’ research focus (e.g. AMES, 2003). By testing the compatibility of the 32-bit ARM instruction set for Bluetooth low energy applications specific to Linux compatible OEM’s (Original Equipment Manufacturers). Bluetooth GATT commands were sent from the two Linux OEM’s and OEM specific application .NET functions were visually compared for performance monitoring of the SoC architecture. Suitability of the ARM instruction set for was then determined by testing the compatibility of the ARM CPU architecture for Bluetooth® LE GATT communications. This basic workflow is universally scaleable. Machines with SoC (System On-A Chip) or FPGA (Field Programmable Gate Arrays), feature instructions for Bluetooth® LE as standard. The best example being the Raspberry Zero, and Pi3b+ with its Broadcom SoC, and ARM CPU 32-bit instruction set. This feature is now being exploited by industry and serves the medical community (biometrics), connected smart cities and agriculture (temp and humidity sensors), the defence industry (pressure, temp, and data analytics), and is now being marketed by companies such as Microsoft Corporation, Toshiba Corporation, and Hitachi Corporation.
The predicted AARCH64 support requirements, for the environmental data sets used in the ethical assessments, make artificial intelligence-based computer instances increasingly biased towards those environmental variables without fundamental biophysical assumptions that allow all classical and non-classical models to be simulated first, e.g. (Thompson et al., 2020) who looked at both epigenetic and classical evolution Bayesian estimation in simulating genotype-phenotype interactions.

VARIOUS RESPONSES TO ENVIRONMENTAL STRESSES NOT FULLY EXPLOITABLE IN THIS STUDY DUE TO NATURAL LIMIT OF MEASUREMENT TIME

Abiotic stress is a complex polygenic trait involving epistatic interactions (Xu et al., 2011), among loci and dominant genotype by environment interactions (Abou-Elwafa, 2016). Plant responses are controlled by complex regulatory mechanisms mediated by abscisic acid (ABA) signalling, ion transportation, and the activities of transcription factors (TFs) involved in the regulation of stomatal responses. All of which are integrated into the various plant molecular networks, enabling plants to adapt and survive (Osakabe et al., 2014). Previous studies have shown that these evolutionary responses are multi-generational and require many years to elucidate. One considerable challenge is the role roots have, along with other parasitic microbes (mycorrhiza, nematodes, etc.), that affect complex abiotic signalling responses. Many of these cannot be phenotyped to ensure experimental repeats in field conditions, making observations and inferences scientifically fraught with errors and have led to conjecture debate, e.g. Mickan et al., (2016). As such a more extensive review and study are currently underway and preliminary results (reported in Svatos, 2012), concerning mycorrhiza and response to abiotic stress and the provenance of flowering plants, including Tibetan and Syrian barleys are being pursued (Figure 26).

The way plants ‘sense’ changes in environmental conditions outside their preferred habitat suggest physiological and biochemical adjustments in plants are primary responses to abiotic stress because plants complete their life cycle in one location (Lata et al., 2011). The combined effects of drought and other abiotic stresses in barley are elucidated through the morphological, physiological, biochemical, genetic and epigenetic functions of the whole plant. In that respect, continual re-calculation of A.I. workflows must be considered essential for multi-generational time scales in ethical A.I. assessments. As such, many studies are limited by time.
As shown in manuscript four, there was a significant lack of determining ground movement by just using real data. The question arises concerning omics (bacteria and mycorrhiza, for example). Mycorrhizal colonisation may occur when plants are subjected to drought, thus increasing the surface area of the root zone and allows more water uptake, to maintain higher osmotic potential throughout the whole plant. Whether there is an overlap for the integration of function remains to be seen (the result of Manuscript 4 machine learning). It is highly unlikely that an A.I. simulation with an omics focus would result in the same significance and heritability for all environments and situations to discover some new evolutionary process; it is not that simple. Remembering, that a broad range of techniques is critical for a comprehensive and realistic understanding of biological communities; approximately 60% of genes in all microorganisms are ubiquitous and have different functions in similar species and organisms, such that the presence of DNA sequences may not be sufficient to link genes to a specific service. Low abundance (<0.1%) of genes can be linked to important pathway functions. Therefore, relative abundances of certain groups of organisms are taxonomically diverse, estimations of species or phyla numbers may make it difficult to determine due to adaption via a complex series of mechanisms in horizontal gene transfer, for example, root-rot nematodes. Mycorrhiza fit into this domain, too (Figure 26).

These considerations are not commonly used to eliminate bias that may be experienced in linking land use to microbial diversity, abundance and function assessments as pointed out in Svatos and Abbott, (2019) (Manuscript 2), but potentially with omics integration may alleviate some relationships. Although this may just make things even more challenging. Many studies detail thousands of QTLs including significant QTLs for drought tolerance and propose yield increases in the order of 10% and as high as 30%, e.g. Lakew, (2009), Hasanuzzaman et al., (2013), and Robinson et al., (2016). Many of these QTL’s are unsubstantiated with significant differences between the phenotypic measurement, and heritable genetic responses very apparent. Phenotype dictates genotype, so extensive replicated field experimentation within the phenotype data collection related to yield is already over-exploited, and drought tolerance requires significant genotypic collocation in all environments to enable new theory development (Manuscript 3). Linking everything together to associate with a heritable trait based on some cause, is questionable in statistics, so it should be considered the same in biology.
A solution to the “problem of physics as it relates to biology,” no. Just another theory, but one of many, e.g. (Greenlon et al., 2019), all with similar strategies, similar results, and similar outcomes (less can cost more).

AGTECH AND TELECOMMUNICATIONS REQUIREMENTS FOR SUCCESSFUL ENVIRONMENTAL AGRICULTURE DATA-SCIENCE A.I. ROUTINES

The challenge farmers and land managers face are constant but increasingly more varied and diverse. Farmers buy what will do the job, that can be maintained by them and where spares are available. Their biggest complaint about modern technology is that it is too expensive, too complicated, and farmers don’t get a good outlook on the return on their investment. GPS and virtual reality technology (VRT) have been around for 10+ years. Still, very few farmers and agricultural OEM dealers have the skills, tools or ability to alleviate the technology ‘points of pain,’ i.e. expectations of financial savings and stellar tech support. Variable-rate fertiliser technology and variable-rate seeding takes a long time to set up and involves extensive fault finding of multiple systems – mechanics, power drives, electrics, electronics, hydraulics, pneumatics and software – with complex second-order impacts. The proprietary software is expensive; each OEM’s software won’t talk to the other’s and requires software support. Furthermore, processing data takes too long and needs to be integrated with soil data and instruments on ground-based vehicles. Increasingly farmers are becoming firmware hackers with little understanding why from their own industry (The GRDC) (GRDC chairman Mr. J. Woods personal communication, 28th February 2017).

PCA and CCA from Svatos, (2011) and Svatos, (2012) soil data and soil website data displayed physical, chemical and biological properties by plotting difference and variation vectors, for land use types. Using the methods of Greenhalgh, (2002), visual vector representations of various data sets in polar form, matrices were transformed into vectors, where vector coordinates represented the differences between n- properties (physical, chemical and biological) and length of vectors represented variations of data within each group (land use type) across the whole data set. By using this superficial estimation approach similarities and differences between the differently qualitatively managed farms and quantitative data of land-use type was determined. This is a universal function, in that any data can be used to establish relationships through the architecture and could benefit farmers and environmental scientists alike.
The core .NET implementation of a pythonic ASM into ARM sys.io for AARCH has significant problems currently (ASM for the pythonic performance of AARCH support for ARM running .NET core 3.0 and 3.1). As such, the correct ASM to implement on the core has hampered *.dev and runtime I/O. Telstra and Optus have no demonstrated commitment or social obligation to farmers for remote broadband, and new, low orbit satellites will still not provide the resolution or timeliness to deal with ‘hotspots; ‘fungi, pathogens, insects, diseases, frost and other problems. Broadacre crops such as wheat, barley, canola and sorghum need to yield at least an extra $4/Ha or save costs of that order to justify the time and expense required to establish newer technology such as using GPS, VRT or drones. But, the challenges do not outweigh the potential benefits (Mr. G Trowbridge (Retired) personal communication, 12th May 2021).

ECONOMIC BENEFITS CAN OUTWEIGH DATA-DRIVEN GUESSING GAMES

Current investment in the plant-based genomics sector surrounding the smart farming industry has already yielded significant investment returns. These are exciting challenges. Concerning the availability of the data derived from the yield mapping lacking the additional second-year data set to confirm the hypothesis, manuscript four categorically answers the question, in relation to remotely sensed data. That yearly variation (even for relatively stable soil measurements) cannot be ignored when considering heuristics-based data analytics. The same must be applied to cropping scenarios that use machine learning approaches to ascertain grain yield from historical datasets.

The current ISOBUS standard (ISO 11783) allows farmers to connect devices from different equipment manufacturers to transfer data (‘talk’) to each other. Existing agricultural technology applications fall into five categories of automation:

1. GPS guidance (a mature product but not used commonly or widely except for sowing and harvesting),
2. Co-ordination and optimisation from one OEM,
3. On-site operator-assisted automation,
4. On-site partial autonomy (John Deere, Case IH, New Holland, Kubota, Massey, Ferguson and AGCO all have early production models of tractors, headers, sprayers, tillers and balers,
5. Remote, full autonomy with off-site data processing in the cloud (some R&D in the U.S.A).
The measurements of microclimate are regularly done with one local weather station and used to suggest causality. Other publications fail to measure phenotype correctly due to not following appropriate guidelines with respect to soil analyses. Similarly, (Hill et al., 2019) who suggested that GWAS studies can be performed on complex traits but failed to measure more than one trait in the two-year multi-environment (~4) research and assumes that the data from singular weather stations at each site can account for the deviation within plots but more importantly within a singular algorithm heuristic.

The software/hardware architecture required consists of a highly specific, highly flexible kernel to link the IoT infrastructure with options for automation, machine learning, and sophisticated embedded hash encryption based on computational theory. However, the statistical outputs that have been used in this thesis represent a significant step towards unentangling parallel computation projections (considering the emulation layer) the environmental, biological systems, required from the A.I./genomics perspective are not computationally Hamiltonian resources at the source code, kernel level. The peer-reviewed strategic ‘white paper’ and conference proceeding, include additional unpublished datasets and results and strategic analyses from the discovery of three collaborations that add further scope to the published strategic policy document and the published conference proceeding. That inadequacies in larger groups can be overcome somewhat by taking novel approaches when necessary. Including creating deepfakes.

As such digital twins and in particular ‘Murdoch Twins’ represent a significant step forward. Advances in the development of technologies, including the rollout of ‘smart,’ automated systems that offer real-time decision-enabling tools, however, is new. While also providing economic benefits through the improvement of logistics supply chains, these digital twins are engineering tools that can increasingly connect shared software libraries to data lakes, in an ‘always connected’ information ocean (Hagendorff, 2020).
THE STEADY RISE OF WELL MEANING, ILL INFORMED, DATA SCIENTISTS IN THE A.I. ETHICS COMMUNITY

Based on the hypothesis: Digital twins can be embedded and launched in AI manifolds for the statistical analysis of heuristics data, and for correlation and extrapolation of predicted outcomes to make ethical assessments.

Under increasing variability, predicted results based on environmental data sets used in ethical assessments may make artificial intelligence-based computer instances biased towards those environmental variables and data, and leads to ethical use of deepfakes in the current geopolitical landscape.

There is little known supporting evidence that A.I. ethicists who act in the interests of a particular group or institution are doing so without objectively focussing on their research aims. The recent retraction by the Lancet concerning the validity of the database that was used to evaluate ill effects of hydroxychloroquine (by a Chicago-based A.I. and machine learning company) goes to show that where ethics, A.I., machine learning, and databases are concerned (not the science itself) that it (the method) appears to be open to any form of implementation and interpretation. And this is fundamentally a good thing. However, the peer-review process concerning heuristics and A.I. needs significant overhaul concerning trust, and from an ethical perspective, because of the significant divide between; in this case, it appears to be between medical doctors and data-scientists. It is not surprising.

Environmental datasets and their biases are a critical consideration for this purpose, especially in A.I. experiments and digital twin simulations. This is of significance because where a ‘closed universe’ dataset is generated, the natural variability is shaped or minimized in statistical models used to predict outcomes. This shaping or minimization process creates additional uncertainty due to the environmental background being a built or constructed design. There is no qualitative aspect. And decision-makers, (A.I. ethicists) do not come from data science or machine learning backgrounds. Fundamentally, this is wrong; such that if there is a model to predict the outcome a, b, and c, based on environmental variable x, y, and z then outcome themselves are limited by the variables, and this closed environment (container) holds the bias. When applied to non-ideal games, or situations with missing data, qualitative interpretation is required. This is right.
The question in relation to the ethics of such outcomes is therefore significant because the variables used to calculate x, y, and z cannot be infinite, due to the apparent limits on resources that are available at any one time, e.g. computing CPU, GPU, and energy (power) etc. This uncertainty which Freedman, (1995) spoke of in his many years trying to model dynamic data to physical variables via stats, forms the very basis of scientific understanding, which nowadays is being ignored by scientists to construct A.I. computations, with little knowledge of the variables themselves. Additionally, groups such as those are using political provenance arguments to counter bias embedded bias assumptions. Specifically, Mohammad et al., (2020) whose suggestion, “decolonial theories use historical hindsight to explain patterns of power that shape our intellectual, political, economic, and social world. By embedding a decolonial critical approach within its technical practice, A.I. communities can develop foresight and tactics that can better align research and technology development with established ethical principles, centring vulnerable peoples who continue to bear the brunt of negative impacts of innovation and scientific progress,” shows that even Oxfordian understanding of source-code development towards a “universal A.I.,” to address fundamentals (the pursuit of globalisation) has been overtaken by qualitative interpretation in their knowledge of what A.I. is meant to be used for. That A.I. is a one-size-fits-all ruler is ethically biased and a non-sensical game that should not be explored categorically.

Indeed, there is merit in the discovery of new theories and modelling environmental data to try and find the best correlation based on the variables (Svatos, 2018), however, it seems inherent that in each precise model their arises new variables and potential theories, which are seemingly limitless. Is there a limit to the number of variables that can be used to model a closed system without increasing bias in the knowledge that those variables are potential extra sources of variability?

The answer must be no because there is no limit to the physical methods of data collection, in much the same way there is no limit in the number of times a straight line with a gradient of 1 can be divided revealing a straight line with a gradient of 1 (on a solar-powered graphical calculator). Pure quantitative data will always remain quantitative unless biological emulation can be incorporated into the molecular and computational theory. The problem lies in this physical fact. And, therefore in A.I. assessments and especially in the creation of digital twins to manage species outcomes based on a limited amount of data, even without considering the
hypotheticals, the hypothesis of this thesis should be accepted because it only is about one individual’s perspective.

On the question of whether the physical limitation of the model itself to predict ethically unbiased outcomes based on the potential of an unlimited source of variables; it will remain a biased question regardless of who asks it, there is no other way to determine the outcome even in double-blind experiments, because of quantum mechanics. It’s used in the generation of random numbers, particularly in Hamiltonian net simulations (e.g. Grimsley et al., 2019). A number of important reasons concerning conducting research and the ethical debate surrounding implementing limits on natural superposition theory and entangled quantum phenomena in biological systems are currently being explored by the author and others. There have been numerous studies where people have tried to simulate brain neurology and other molecular pathways to enable the visualisation and computation of algorithmic Boolean gates and operators in 2D and 3D planes in real-time (Huang, 2020). However, these have mostly been limited in the mathematical realm and have used data sources that are not theirs. As such, it remains to be seen, that the outcomes of their probabilistic notion are anything but hypothetical objectives.

On the finite nature of atoms in this aspect of intelligence, as it relates to perspective, there is only no limit to the number of theories people will generate until the natural curiosity is answered individually. Combined with classical genetics studies, newly available sequencing technologies (e.g., 3rd generation sequencing, quantitative methylation-specific PCR, whole-genome metabisulphite sequencing) with 6G core to core real-time processing of targeted mutation might give a more definite answer. But what was unthinkable five years ago only seems the reality now. Many plant species can propagate asexually and produce vegetative clones, providing opportunities for the mitotic inheritance of epigenetic states leading to significant new complex traits. However, perhaps a paradigm shift in the representation of genes specific to traits. Lützge and Thellier, (2016) stated that “stored information, allowing the expansion of an integrated, efficient response to the variety of stimuli perceived by the plant during a time span Δ, is, in fact, instruction for optimized allocation of the plant resources to its principal living activities”. The concept ‘gene essentiality’ has already been proposed for the non-absolute nature of all genes (Rancati et al. 2018), but; this understanding is their understanding.
Perhaps it is time to revisit the original ideas by exploiting trait data, environmental models, and bioinformatics tools specific to the adaptation of many original phenotypic theories via heuristic algorithms using hidden Markov chains (HMM) (Aslam et al. 2017; Fong et al. 2017; Keight et al. 2018). Kidd and West, as early as 1918, described "physiological predetermination" as an external condition operating on the seed at the critical stages of germination. But, modern crop plant adaptation has evolved to be high-yielding with a focus on tolerance of more recent biological stress (Weckwerth et al., 2020). There is evidence to support heuretics research because it can deliver information from historical data which can then be overlaid with modern genomics and epigenetic sequencing data. Moreover the importance of old data sets and their potential role in improving accuracy of A.I., learning where a lack of significant data exists cannot be ignored or swept aside by dividing; concerning any game-simulation or citing political reasons e.g., (The Lancet Group, 2020; Nature, 2020). Culturally; the use of digital twins in deepfake games is only just beginning.
FINDINGS AND RECOMMENDATIONS
THESIS FINDINGS

Based on the discussion, and the trust generated not correlating well to quantitative A.I. latency time observations (inherited embedded bias). Genetic algorithms further obscure quantitative interpretation of qualitative phenotypes (deepfakes), species’ data used in downstream analyses and is unethical (usurped data) therefore it is stressed;

1. Statistical models do not correlate well to quantitative A.I. due to inherited embedded bias (latency vs time), with the potential for non-Turing-complete systems being utilised in mainstream applications, including government investments in IoT.
2. Genetic algorithms further accelerate and obscure qualitative interpretations required of quantitative data leading to a purpose for deep fake imagery, (for example, where unrepeatable based observations occur segregating on colour may occur).
3. There are still significant unanswered ethical implications concerning first nations’ peoples’ data, as it relates to A.I., (and not only genetic discoveries) concerning source-code trust in any embedded A.I. management system.
4. The supposition that a one-size-fits-all (objective) divide and conquer strategy (for embedded A.I., within an objective statistics model to associate cause) will not generate any new revolutionary discoveries, is right. It would have already been discovered.

THESIS RECOMMENDATIONS

1. The use of A.I. in its current form as it relates to public trust of embedded, machine-based source-code, should not be considered ethical by the scientific community.
2. Qualitative interpretation of the data as a means of usurping the original source is not a trust relationship in an A.I. context.
3. Any species’ data used in a downstream analysis is unethical where any previously unacknowledged tenet exists (no matter how significant) and has cultural implications.
4. Deepfakes are necessary for the current landscape for future validation of source-code, trust, bio-security, data sharing relationships between nations.
5. Murdoch Twins may be used to facilitate 6G and quantum encryption.
FUTURE TRENDS
THE NEXT 30 YEARS AS IT RELATES TO THESIS TENET, A.I. AND BIOPHYSICS

We are at a crossroads of genetic discoveries where classical genetic improvement through QTL mapping and screening based on a single gene approach will not be sufficient to meet the estimated 40% increase in crop productivity required to feed 10 billion by 2050 under the increasing consumption scenario. However, without knowledge of the functional aspects of gene theory, and more importantly real-time observational aspects of the traits themselves (i.e. the most significant bottleneck), the required advances will remain un-attainable and be open to manipulation of datasets used in qualitative interpretation. Researchers have been mainly interested in demonstrating that adaptation capacities exist in plants and animals by unravelling the main characteristics of adaptation (GWAS, EWAS, etc.). However, adaptation is not an occasional episode but a fundamental property governing survival. There is increasing evidence for how environment influences gene expression and the inheritance of epigenetic characters in plants and animals. How much of this inheritance is due to environmental factors, could be answered by A.I. Whether or not specific epigenetic changes have accompanied memory is fundamental in computer and biological algorithm development but may not be Turing-complete. In 1962, Kuhn mentioned that genetics and epigenetics must not be seen as different areas, but instead, integrated to provide a broader repertoire of molecular factors to explain how life is controlled. It is concerning that life should be “controlled.” Particularly as it relates to the cultural use of data in games. The point is that ethical data use can only result from ethical data collection. Data ownership aside if a cultural claim exists or predates a data collection event, said claim would predate the data and would have just as much relevance to the model / game in its validation because A.I. is all about evolution nowadays.

Ethically it is therefore right to assume that all open source or proprietary software (6G being the next iteration that will probably also use TCP/IP) will include all possible data (all personal data). In fact it would be unwise to assume that a big company like Bayer would ever consider for example data owned by a rival company useless. More so the data would be usurped under the current manifests when scaling up e.g. Azure vs AWS. ‘Murdoch Twins’ is the name that was given to the twin instances in Azure as it relates to ARM AARCH64 architectures and their usefulness to Nokia and relates to the current LTE Moon Shot NASA project and my desire to measure gamma emission from the sun as suggested to Nokia Moon Shot Intuitive Machines VP Space Services, T Martin through personal communication on 27th October 2020.
Subjective or not if validation of data cannot be seen as culturally significant to the original owners of the source of the data then the ethics of the use of said has to be questioned. Who owns the moon? The tenet of the thesis points to the cultural appropriation of Tibetan barley by the Han Chinese through a claim of ‘a priori.’ Unethical or not deepfake images and digital twin games are a natural response, and thus ethically appropriate in the current geopolitical landscape.

As a scientist I am interested in determining the entangled components of Hamiltonian manifold, neural-nets by measuring Euclidian distances of heterodyne equilibrium functions, as they relate to the fundamental measurement of evolutionary time (in biological systems). There are already Bayesian and other Monte Carlo methods to measure this phenomenon but these fall drastically short because of the qualifying statement about the random nature of an elementary particle (i.e. the spin states). All qualitative computations have an inherent bias that may be random in nature after all. This is a source of “flux” or “ebbs and flows.” Blips. Measuring the difference using a Gaussian can allude to some of the more common prime number examples (Bluetooth or WiFi signalling protocols) however, they are only a ‘pseudo-random’ number sequences and have a determinable prime as a factor if you follow the physics and calculate the vectors. I am more interested in trying to determine the spin states of entangled quanta quantitatively in biological systems, because fundamentally these are the most important subjects in biophysics. Evolutionary theorists will always talk about the random nature of evolution but a physicist will always argue against you, because “god doesn’t play games with dice” as Einstein said. When we look at the fundamental nature of the calculus as it relates to pair-wise distribution in a canonical simulation or its equivalent in biophysics, you will see that a lot of progress is being made. However, the entangled nature of the biological system or its equivalent particle derivatives; as it relates to Dirac, Feynman and others (who talk about normalized peaks) with respect to some limit (approaching a theoretical equilibrium) do not make up for the lag (latency Δ.t) because their systems are different (theoretical vs real) i.e. not Turing complete.

The question that needs answering is can the theoretical equilibrium be reached in an evolutionary system as it relates to the entanglement of particles? The laws of physics (relativity says no) but theoretical particle physics says yes. And as it relates to the particle distributions (in a targeted mutation experiment for example using gamma) what are the causes of (for
example) mutations that result in epi alleles or “hot spots” that then cause (for example), a Gabba shunt or ABA cascades as it relates to the fate of these evolutionary Klein Klima interactions in the next generation? In the field of interactomics using “natural sources” to measure an elementary particle, i.e. to build a digital system instead of relying on observations alone to predict causality may answer that. Validity only lies in the subjective nature of that system itself.

Therefore, is A.I., security and control an ethical A.I “trait”, concerning opposing evolutionary views? It cannot be, and so the question “who owns the data?” remains. “As researchers seek to unlock the power of data analytics (M.L., A.I.) in agrifood value chains, purveyors of fine products and services utilising said products, and those organisations which digest them, all seek to make their fortune, it is refreshing (and most necessary) to pause and consider the ethical implications of the outcomes.” Ethical use of deepfakes is a natural progression, where sources of data are not always acknowledged. However, in science, there is a need for clear direction, to continually question data, including its validity, source and the methods used in its collection, in the future. Without that clear direction and without an applied focus on the aims at all times, bias will consistently be more significant due to the nature of data collection. Bohr’s biophysics “problem.” We cannot merely eliminate bias from research because it will continue to be there, and even if it is staring us in the face, we are sometimes too blind to see it. We must continue to map a new way of free-thinking concerning the use of species’ data, and for digital twins but more importantly considering our ethical responsibilities concerning data and its use, including the cultural implications of deepfake games, in not only heuristics but all aspects of life. And with this challenge, a new set of biases will appear and cloud our neon vision. However, after all is said and done, there is always a light at the end of every tunnel.
THESIS APPENDICES
TABLE OF APPENDICES

APPENDIX 1: Remote 5G automated phenomics platform for low melting temperature fat, native grass grazed export cattle Wagyu EWAS

APPENDIX 2: The role adaptive trait plasticity plays in pre-harvest sprouting in barley

APPENDIX 3: Microbial community response to nitrogen use in dairy soils

APPENDIX 4: Phenotyping stomatal response combined effects of heat and drought via an automated R-Python generated transpiration model of multi-spectral data (Proof of concept)

APPENDIX 5: Australian drone technology assisting a significant step in step in crop tolerance to heat and drought stress

APPENDIX 6: Preliminary assessment of employing hyperspectral imagery to detect minerals indicative of uranium ore from unmanned aerial vehicles

APPENDIX 7: PhD scholarship in digital connectivity and big-data analytics in agriculture
Since the invent of the SEQUEL2 platform for SMRT sequencing (Pacific Biosciences of California, USA), and the associated cloud-based embedded .NET, enabled application developments for the Sequel II system (for remote shell access programming over 64-bit architecture APIs), the immediate benefits have not yet been realised. The company states, “we are ready to take your questions on plant and animal research, human biomedical research, microbial genomics, and SMRT informatics in all application areas, including whole genome sequencing and annotation, targeted sequencing, and metagenomics and epigenetics,” In this abstract submitted to PacBio (September 2019) for an SMRT sequencing grant, a case was made for a remote LTE/5G API based sequencing EWAS study (pacb.com/smrt-science/smrt-grant/). Given the more recent challenges facing the industry in relation to provenance, it is expected that studies like these will become commonplace, due to the tracing and quality control that these studies enable and the higher likelihood that consumers will value provenance over price more than ever. Additional SMRT sequencing grant applications were also made and are partially addressed in Appendix 3.
ABSTRACT

Previously supported research in Western Australia by the Department of Industry and Regional Development, the University of Western Australia, Murdoch University, the CY O’Connor Institute, and a local indigenous community has identified potential benefits from identifying the genetics behind low-melting-point fat content in Wagyu beef which makes it potentially healthier to eat than other beef when fed a premium indigenous grass diet. Such a product would attract a significant premium when sold at market.

This project focuses on characterising the holobiont surrounding indigenous grasses subsequently grazed by Wagyu cattle using a histone tail Epigenome Wide Association Study (EWAS). Sequel systems will be used to characterise microorganisms from their unique, isolated environments including from the soil, water and plant tissue (roots, leaves and seeds), for correlation of the methylation patterns generated to Maldi-tof proteomics meat protein data to characterize the beneficial health effects of the native grasses versus traditional supplemented Wagyu.

This project will use cattle from 7 locations in WA grazing on native grasses separated by 3000 km that are unique to those environments. Bioinformatics analysis will be used to genetically characterize the variability of the cattle food intake having adjusted for external factors, such as environment and location to look at specific epialleles that are custom to the animal’s stage of growth which reflects meat quality. The results from this research will be published in a scientific journal and distributed as an industry report to accelerate the production of higher quality, Wagyu beef from Australia.
APPENDIX 2: THE ROLE ADAPTIVE TRAIT PLASTICITY PLAYS IN PRE-HARVEST SPROUTING IN BARLEY

The following manuscript was prepared for the frontiers journal series concerning plant breeding in a special edition about pre-harvest sprouting. After attending an event in Western Australia with the focus on pre-harvest sprouting, the author set out to write a review that bridges the complicated aspects of epigenetics, with the interesting historical background concerning the unique way ‘big-data’ can be linked to pre-harvest sprouting for improving plant breeding.

At the time, the manuscript was presented as a precursor to a series of plant biology experiments concerning epigenetics (EWAS). The University of Western Australia Significant scientific comment was sought from various academics including Murdoch Professors’ Chengdao Li, and Wujin Ma, and UWA Professor Ryan Lister. Professor Lister, at that time, was asked to consider collaboration efforts concerning the idea of an experiment using high-quality phenotype throughput data specific to GC islands and epigenetic expression feedback loops on the Pac Bio SEQUEL1 system. “The cost of such an experiment although potentially good, might not yield significant enough data to explicitly answer the question concerning the idea itself, which might be difficult to justify.”

This manuscript is a reflection of that research effort. Since then, the author now has access to a brand new SEQUEL2 system (as of March 2020), through independent collaboration efforts (separate to those of The University of Western Australia), who do not have access to this new machine yet.
The role adaptive trait plasticity plays in pre-harvest sprouting in barley

Karl B. Svatos*, Dean A. Diepeveen†,‡, Lynette K. Abbott§

†School of Veterinary and Life Sciences, Murdoch University, Australia, ‡Faculty of Engineering and Mathematics, Curtin University, Australia, §Department of Primary Industries and Regional Development of Western Australia (DPIRD), Australia, §School of Agriculture and Environment, University of Western Australia, Australia

Submitted to Journal:
Frontiers in Plant Science

Specialty Section:
Plant Breeding

Article type:
Mini Review Article

Manuscript ID:
369347

Received on:
28 Feb 2018

Frontiers website link:
www.frontiersin.org
Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

Author contribution statement

Karl Svatos the corresponding author was solely responsible for the writing of this from conception to manuscript including the main philosophical content.

Dean Diepeveen aided the formation of the philosophical guise, and added some grain yield information.

Lyn Abbott was mainly involved in the editing and in the driving of philosophical content equally with Dean.

Keywords

Barley epigenetics, Plant memory, Pre-harvest sprouting, heuristics and big data, methylation bioinformatics

Abstract

Word count: 125

Pre-harvest sprouting can have a devastating effect on grain yield and quality. Modern techniques used to analyze genes and gene function is changing rapidly. Fundamental to this change is the incorporation of environmental trait plasticity (based on transgenerational epigenetics) into existing evolutionary models based on natural selection. New varieties can then be developed with resistance to pre-harvest sprouting because traditional QTL, gene function, and genetics principles will not be able to keep up with consumption and the demands of global food security. The incorporation of historical big data sets in statistical methods, for example, heuristic Monte Carlo algorithms implemented through supercomputers, is enabling more accurate genotype by environment observations that support epi-QTLs, complex trait incorporation and optimum phenotypes at a rate faster than ever before.

Funding statement

We thank Professor Chengdao Li for his advice and the Grains Research and Development Corporation for a postgraduate scholarship (to KBV5). GRDC Grant Number: MU000049.
THE ROLE ADAPTIVE TRAIT PLACITY PLAYS IN PRE-HARVEST SPROUTING IN BARLEY
Karl BW Svatos1*, Dean Diepeveen1,2,3, Lynette K Abbott4
1 – School of Veterinary and Life Sciences, Murdoch University, Murdoch, W.A., Australia.
2 – Faculty of Science and Engineering, Curtin University of Technology, Bentley, W.A.,
Australia.
3 – Western Australian Department of Primary Industries and Regional Development, South
Perth W.A., Australia.
4 – UWA School of Agriculture and Environment, The University of Western Australia,
Crawley W.A., Australia.

Correspondence:
K.svatos@murdoch.edu.au

ABSTRACT
Pre-harvest sprouting can have a devastating effect on grain yield and quality. Modern
techniques used to analyze genes and gene function is changing rapidly. Fundamental to this
change is the incorporation of environmental trait plasticity (based on transgenerational
epigenetics) into existing evolutionary models based on natural selection. New varieties can
then be developed with resistance to pre-harvest sprouting because traditional QTL, gene
function, and genetics principles will not be able to keep up with consumption and the demands
of global food security. The incorporation of historical big-data sets in statistical methods, for
example, heuristic Monte Carlo algorithms (hidden Markov chains) implemented through
supercomputers, is enabling more accurate genotype by environment observations that support
epi-QTLs, complex trait incorporation and optimum phenotypes at a rate faster than ever before.

KEYWORDS
Barley epigenetics: Plant memory: Pre-harvest sprouting: Heuristics and big-data: Methylation
bioinformatics
INTRODUCTION

Adaptation is an essential evolutionary function for all life and is crucial for the successful performance and survival of plants in their environment (Lüttige and Thellier, 2016; Köhler and Springer, 2017; Müller et al., 2018). Phenotypic plasticity is a function of adaptation and involves adjustments to express functionally relevant phenotypes in contrasting conditions (Sultan, 1995; Matesanz and Milla, 2017). Trait plasticity is reported across all lifeforms (single and multicellular) and in particular in the flowering lineage of grasses that includes wheat and barley (Gilady and Hoffman, 2013; Gage et al., 2017; Rancati et al., 2017; Müller et al., 2018). Perhaps the most significant challenge surrounding research in adaptive trait plasticity specific to pre-harvest sprouting is the misunderstood relationship it has with transgenerational epigenetic inheritance (Heard, 2014; Burggren, 2016). Trait plasticity as a model for epigenetic inheritance is pursuant to the challenge of ruling out genetic effects underlying the phenotype of the offspring. Nevertheless, more than 80 years have passed since Muller described what is now called position-effect variegation (Felsenfeld, 2014), which was around the same time that Lysenko converted winter wheat into a spring variety through ‘jarovoe’ or vernalization (Dombrowski et al., 2001; Hepworth et al., 2018). The Russian epigenetics movement under the Marxist doctrine was Lysenkoism (the political tool), but it failed to achieve Stalin's promised “revolutionary leaps”. It was not until much later that plant adaptation was found to play a vital role in abiotic stress tolerance, including in pre-harvest sprouting, as highlighted in depth by Lindsey and Knight, (1999), Tricker, (2015), and Lämke and Bäurle, (2017).

EPGENETIC PHENOMENA SPECIFIC TO TRAIT PLASTICITY

Epigenetic phenomena specific to trait plasticity have been described and categorized in a range of processes in which the rearrangement of genes on the chromosomes become inhibited selectively (Herman and Sultan, 2016; Schneider and Meyer, 2017). Epigenetic changes are responsible for para-mutation in plants, whereby one allele can cause a heritable change in gene expression of the homologous allele (Brink, 1956; Stam et al., 2002). An epigenetic state is inherited from one generation to the next both meiotically (e.g., the histone H3 methyltransferases - H3S10P), and mitotically, and therefore leads to the cell condition, ensuring the inheritance of their differentiated state over mitotic cell division (e.g., the histones, H2A, H3, and H4) (Bendix et al., 2015). Examples of publications on meiotic and mitotic families of histone transferases which are specific to wheat and barley include those by Rassoulzadegan et al., (2006), Borrill et al., (2015), and Li et al., (2018).
Quantitative genetic models of phenotypic plasticity need further refinement because the introduction of functionally characterized genes and their associated trait epi-QTLs into the significant varieties versus traditional crossing and selection methods will advance resistance to pre-harvest sprouting at a faster rate (Schneider and Meyer, 2017; Gao et al., 2018). When a trait encodes for an environmental response, it is primarily a response to genetic drift that may undergo genetic assimilation, and this is an extension of the concept of natural evolution through chance (Williams et al., 1966; Lande, 2009). Müller et al., (2018) proposed an evolutionary viewpoint to order and characterize classifications of ‘adaptive immunity’ described across all major domains of life. The inherent problem with epigenetic studies specific to abiotic stress, pre-harvest sprouting and epigenetics studies, is that: (i) there is little consensus on what constitutes permanent incorporation of an elaborate epigenetic phenotype into the genome; (ii) most studies only consider intra-generational inheritance; (iii) there are very few scientific publications that link epigenetics with evolution, and (iv) there is relatively little experimental data operating at the epigenetics, natural selection and evolution nexus (Burggren, 2016). Short-term stress under controlled conditions might not result in the same epigenetic signatures as long-term exposure to natural environments in plants (Song et al., 2013; Hanson and Skinner 2016). However, if an environmental cue generates genomic immunity by a transposition of the invading element, this acquired characteristic can become heritable across generations (Köhler and Springer, 2017; Richards et al., 2017). Plants are heavily dependent upon changes in gene expression to respond to environmental stimuli, and chromatin-based regulation of gene expression is a likely crucial element (but not the only factor), in determining the level of epigenetic inheritance of traits responding to the environment; this includes the pre-harvest sprouting phenotype (Köhler and Springer, 2017) (Figure 1).

Figure 1: A hypothetical model for trait plasticity of the barley pre-harvest sprouting phenotype. Darwinian natural selection as the fundamental process of genetic transfer of traits, coupled with adaptation (environmental memory) passed via epigenetics to the offspring (based on the philosophical works of Kuhn (1962), Griffiths and Stotz (2013) Hanson and Skinner (2017), Lenski (2017), and Gao (2018)).
The physiological mechanism involved in the initiation and release of plastic traits related to pre-harvest sprouting includes the seed dormancy phenotype (Nonogaki, 2014). Both phases involve complex interactions between environmental and genetic factors (Le Gall et al., 2015). In conditioning for the eco-physiological performance of plants, distinctions between adaptation, acclimation, and acclimatization need stating. Adaptation refers to the spectrum of changes that follow acute and repeated exposure integrating genotypic and phenotypic responses (Lenski, 2017), and may also include behavioural responses, including reduced activity levels (Gagliano, 2015). Acclimatisation is the interaction of adaptive physiological or behavioral changes within an organism in response to the natural climate or environment (Thellier, 2017). Acclimation differs from acclimatization in that rather than adaptive characteristics augmented in a natural climate or environment, the stimuli for adaptation is induced artificially (when plants are grown in glasshouses or growth chambers with ambient conditions set and altered to suit experimental design). Whereas adaptation mostly refers to heritability, genotypic traits that have evolved through natural selection acclimation and acclimatization refer to phenotypic traits that are environmentally inducible, and mostly reversible (Abdurakhmonov and Abdukarimov, 2008; Bita and Gerats, 2013). A critical factor in all three adaptative responses is the circadian clock and its role in environmental cues subject to regulation by photoperiod, which amongst others, serves to coordinate signal transduction (Campoli et al., 2013; Müller-Xing et al., 2014; Bendix et al., 2015).

MAJOR INFLUENCES ON THE PRE-HARVEST SPROUTING PHENOTYPE

Recent publications on the primary molecular mechanisms underlying the encoding behaviour of environmental seed dormancy responses and its regulation are those by Nonogaki, (2014) and Nonogaki and Nonogaki, (2017). These include information on (i) silencing of seed dormancy genes through histone and DNA methylation, (ii) repression of dormancy genes and activation of germination genes through histone deacetylation (iii) repression of seed germination genes through histone deacetylation, and (iv) histone ubiquitination and methylation associated with transcription elongation (Nonogaki, 2014; Nonogaki and Nonogaki, 2017).

There may be evidence that seed dormancy has contributed to adaptation and evolution of seed plants through the existence of plant hormones and the roles that these have with immunological responses to climate (Zhou et al., 2018). However, the differential regulation of signal
transduction and alternative splicing of chromatin (and other non-coding regions) associated with plant hormones and their relationships with the environment remains elusive (Ishibashi et al., 2017). It is understood that the key players include the abscisic acid (ABA) and gibberellin (GA's) pathways and reactive oxygen species (ROS) (Barrero et al., 2012; Vishwakarma et al. 2017). ROS promotes seed dormancy, and seed germination in several cereal crops and ABA pathways can lead to the breaking of dormancy through the application of GA (an antagonist of ABA) that can inevitably lead to pre-harvest sprouting trait expression (Ishibashi et al., 2017). Synthesis of ABA and GA systems with orthogonal dCas9 regulators has been shown to be able to independently control the expression of different genes within the same cell (Lo and Qi, 2017). These systems can aid the construction of basic Boolean logic-gated dCas9 operators allowing for orthogonal and multiplexed transcriptional modulation (Lo and Qi, 2017).

Heat and drought ROS and ABA research has also yielded evidence that epigenetic regulation specific to signal transduction plays a crucial role in both ABA pathways and ROS biology concerning circadian rhythms (You and Chan, 2015; Haak et al., 2017). Moreover, by modifying the circadian rhythm through ABA and ROS pathways, new complex traits related to pre-harvest sprouting could enable resistance, avoidance and potentially increased yields in risk-prone areas. As with any complex trait expression (e.g., extreme cold and water effects on the embryo), extensive knowledge of the sum of all traits that makes up the complex trait is required, and it has been claimed that these traits, when expressed, may be crucial for population survival (Balao et al., 2017). Hepworth et al., (2018) identified distinct aspects that temperature profiles contribute to signal generation. The mechanism on which the signal generation was based on was then used to associate temperature to seed germination (temperature fluctuations formed a positive signal and induced seed germination). Temperature variation sensitivity may, therefore, be a vital mode of information processing in plants. In autumn, transient cold temperatures promoted transcriptional shutdown of Arabidopsis FLOWERING LOCUS C (FLC), independently of co-factors, conferring epigenetic memory (Hepworth et al., 2018).

To understand the function of temperature and circadian rhythm specific to trait plasticity of the pre-harvest sprouting phenotype, we need to consider how rapid evolution (increased plasticity) allows the pre-harvest sprouting phenotype to approach and subsequently reach the newly required optimum phenotype (Minelli, 2018). This rapid evolution must adjust for a potentially slow genetic assimilation when the reduction in plasticity is over-compensated by genetic
evolution (Lande, 2009; Griffiths and Stotz, 2013). A primary concept in this may be the canalization process, and how genomic information of the pre-harvest sprouting phenotype encodes the immunity response, however, this idea appears to be unexplored (Müller et al., 2018; Weinhold, 2018).

HIGH-THROUGHPUT PHENOTYPING AND HISTORICAL DATASETS CAN CONTRIBUTE TO INCREASING THE RELEASE OF NEW VARIETIES SPECIFIC TO PRE-HARVEST SPROUTING TOLERANCE

Combined with classical genetics studies, newly available sequencing technologies (e.g., 3rd generation sequencing, quantitative methylation-specific PCR, whole-genome bisulfite sequencing) are facilitating studies in abiotic stress including-harvest sprouting and the epigenetic phenomena associated with pre-harvest sprouting at a level of detail that was unthinkable five years ago (Jenjaroenpun et al., 2018). Epigenetics studies of plants are of importance because plants are sessile and are heavily dependent upon changes in gene expression to respond to environmental stimuli, and chromatin-based regulation of gene expression is crucial for understanding the plant response which contributes to improving the variety. Furthermore, the level of chromatin ‘resetting’ during sexual reproduction appears to be lower in plants compared with animal species, potentially allowing inheritance of epimutations acquired during plant life (Köhler and Springer, 2017). Many plant species can propagate asexually and produce vegetative clones, providing opportunities for the mitotic inheritance of epigenetic states leading to significant new complex traits. However, perhaps a paradigm shift in the representation of genes specific to the pre-harvest sprouting trait is required to move forward. Lüttge and Thellier, (2016) stated that “stored information, allowing the expansion of an integrated, efficient response to the variety of stimuli perceived by the plant during a time, is, in fact, instruction for optimized allocation of the plant resources to its principal living activities”. The concept ‘gene essentiality’ has been proposed for the non-absolute nature of all genes (Rancati et al., 2018).

Scheben et al., (2017) suggested the need for a shift in cropping improvement models that use targeted cycles of elite varieties via genome editing to produce improved varieties with advanced traits or specific adaptation to local environments, replacing cycles of crossing or untargeted mutagenesis and selection. Despite recent advances, the lack of functional understanding of genes remains one of the most significant bottlenecks in crop improvement
using genome editing. The optimum phenotype and genotype norms of reaction are linear functions of the environment, and this affects epigenetic priming specific to pre-harvest sprouting. Interestingly, it has already been proposed that the dCas9 epigenetic editing toolkit will facilitate understanding of the relationship between chromatin states, gene regulation, and cellular phenotypes in mammalian cells (Lo and Qi, 2017).

Perhaps it is time to revisit the original ideas of pre-harvest sprouting by exploiting trait data, environmental models, and bioinformatics tools specific to the adaptation of pre-harvest sprouting phenotypes via heuristic algorithms using hidden Markov chains (HMM) (Aslam et al., 2017; Fong et al., 2017; Keight et al., 2018). Kidd and West, as early as 1918, described "physiological predetermination" as an external condition operating on the seed at the critical stages of germination. Subsequently, Harrington, (1932) (and others) investigated the resistance to pre-harvest sprouting of the wheat varieties Stook and Windrow and showed a genetic link between resistance to pre-harvest sprouting and the environment (Kidd and West, 1918; Harrington, 1932). Included in this research were large datasets with unique observations about resistance to pre-harvest sprouting. Modern crop plant adaptation has evolved to be high-yielding with a focus on tolerance of more recent biological stress. Pre-harvest sprouting has been a significant issue for farm decision-making because rainfall before harvest has a devastating effect on yield. There is evidence to support heuristics research because it can deliver information from historical data which can then be overlaid with modern genomics and epigenetic sequencing data (Fong et al., 2017), therefore we stress the importance of old data sets and their potential role in improving varieties and increasing yields in areas where pre-harvest sprouting is an issue (or where lack of significant data exists).

FUTURE TRENDS

We are at a crossroads of genetic discoveries where classical genetic improvement through QTL mapping and screening based on a single gene approach will not be sufficient to meet the estimated 40% increase in crop productivity required to feed 10 billion by 2050 under an increasing consumption scenario (Gao et al., 2018). However, without knowledge of the functional aspects of genes encoding the traits specific to pre-harvest sprouting, and more importantly the observational aspects of the traits themselves (i.e. the most significant bottleneck in crop improvement), the required advances will remain un-attainable. Researchers have been mainly interested in demonstrating that adaptation capacities exist in plants and
unraveling the main characteristics of plant adaptation (Thellier et al., 1982). Adaptation of plants is not an occasional episode but a fundamental plant property governing their survival. Recent studies indicated that plants have a stress memory that supports adaptation to recurring stress (Gaglino, 2015; Thellier, 2017). There is increasing evidence of how the environment influences gene expression and the inheritance of epigenetic characters that occurs mainly in plants and how much of this inheritance is due to environmental factors (Hanson and Skinner, 2017). Whether or not specific epigenetic changes have accompanied plant domestication is fundamental to plant breeding for pre-harvest sprouting tolerance. Kuhn, (1962) mentioned that genetics and epigenetics must not be seen as different areas, but instead, integrated to provide a broader repertoire of molecular factors to explain how life is controlled, including pre-harvest sprouting.

CONFLICT OF INTEREST
We declare no conflict of interest in publishing this mini review

ACKNOWLEDGEMENTS
We thank Professor Chengdao Li for his advice and the Grains Research and Development Corporation for a postgraduate scholarship (to KBWS). GRDC Grant Number: MU00049.
APPENDIX 3: MICROBIAL COMMUNITY RESPONSE TO NITROGEN USE IN DAIRY SOILS

The following conference proceeding, was published in the Australasian Dairy Science Symposium 2012. Proceedings of the 5th Australasian Dairy Science Symposium, Melbourne, Australia, 13-15 November 2012. The author is not first author, nor is the paper a full length research publication, the important information that needs to be acknowledged is the use of the statistical ordination plots by the authors concerning (PCA and CCA). The contribution of PCA ordination plot data based on the 16S PCR amplified gene fragments, to the land use and bacterial function sets the tone and pace (a strategy and work in Svatos and Abbott, (2019)).

The entire statistical PCA statistical process (displayed here specific to Mediterranean climates) that was developed for use in this conference proceeding and in Svatos and Abbott, (2019) was developed by the author with another researcher R. S. Greenhalgh. It needs stating as it represented (at that time) a significant step in computer vision and graphical processing, that is not acknowledged in Abbott et al., (2012). The original application of the data processing was produced via a program and supporting algorithmic proof, that Greenhalgh and the author were developing since 1999. The original proof Greenhalgh (2002) was presented in Zakopane Poland through Springer; however, this original work has been removed from all internet related sources. Springer was contacted including the current ICCCV management for comment during the writing of this document, but those requests were never fruitful (questions in relation to accessing the work and referencing the doi). That conference also had significant other presenters from Cambridge University; amongst others (Mr RS Greenhalgh personal communication, 1st September 2020). Those authors also did not reply to the authors requests.

The original works (Greenhalgh, 2002; Svatos, 2011; Svatos, 2012; Svatos, 2018) who with the author wrote an original PCA ordination algorithm program in Microsoft Excel at UWA together independently of these other authors’ at the dairy proceeding (that was subsequently used to validate the other statistical methods including in Svatos and Abbott et al., (2019); the program did not originally exist before 2012, the proof and the data output files were conceived, developed, written but have been kept unpublished by R. S. Greenhalgh and K. B. W. Svatos, it remains this way today. The author is pursuing this program concerning its potential use in quantum computing including with American based Karl Corporation.
Microbial community response to nitrogen use in dairy soils

L. ABBOTT1, P. MELE2, S. JENKINS1, K. SVATOS1, D. BOUGOURE2, H. HAYDEN2, I. WAITE3

1Institute of Agriculture and School of Earth and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
2Department of Primary Industries, Victorian AgriBiosciences Centre, 1 Park Drive, Bundoora, Victoria, 3083, Australia

ABSTRACT

High-resolution molecular assays were used to determine the extent to which the microbial community structure was associated with chemical and physical characteristics of soil and/or with pasture plant species dominance in dairy soils. Seasonal changes were observed in soil microbial (bacteria, archaea and fungi) community structure in dairy pastures for a range of management practices in Victoria and south-western Australia (Margaret River region). Management practices included intensity of grazing, nitrogen application, irrigation and effluent disposal. The dominance of genes associated with nitrogen cycling varied with management practice and with associated changes in soil chemical characteristics. Considerable natural heterogeneity in estimates of microbial dominance in the dairy pasture soils was observed. Therefore, additional soil sampling approaches were adopted to minimise effects of soil type or climate.

Keywords: dairy soil, molecular assays, nitrogen, phosphorus, microbial communities

INTRODUCTION

The Australian dairy industry relies on significant fertiliser inputs to increase or maintain milk production (Bolland and Guthridge 2007a; Bolland and Guthridge 2007b; Gourley et al. 2007; Dairy Australia 2012). Investigation of effects of fertiliser management on soil biological processes provides information complementary to knowledge of soil chemical and physical fertility (Abbott and Murphy 2003; Eckard et al. 2007; Jenkins et al. 2009). Microbial processes are essential for cycling nutrients from organic matter in soil (Johnson et al. 2008) and have potential to increase efficiency of nitrogen and phosphorus fertiliser use (Mele and Crowley 2008; Johnson et al. 2008).

MATERIALS AND METHODS

Management practices sampled included intensity of grazing, nitrogen application, irrigation and effluent disposal. The molecular assays used included Terminal Restriction Fragment Length Polymorphism (T-RFLP) and Polymerase Chain Reaction Denaturing Gradient Gel Electrophoresis (PCR-DGGGE) of 16S rDNA genes. The intention was to identify management practices that either limited or enhanced the functional capacity of soil microbial processes as shown using similar techniques by Supaphol et al. (2011).

RESULTS AND DISCUSSION

Microbial community profiling illustrated seasonal changes in soil bacterial community structure in dairy pastures in Victoria (Figure 1). The dominance of species based on detection of 16 S genes associated with nitrogen cycling varied with management practice. There was also a marked seasonal influence.

Figure 1: CCA ordination of 120 soil samples from 12 dairy pastures with different management histories and significant environmental variables based on 240 terminal restriction fragments generated from the 16s region of bacterial rDNA. Sample treatments are: low input N (green shades); effluent N input (blue shades); medium input N (pink shades); and high input N (orange shades). Victorian Department of Primary Industries.

There were few distinctive relationships between soil chemical characteristics and the presence of dominant bacterial groups. In soils collected from south-western Australian dairy pastures (Figure 2),
there was a weak correlation between the occurrence of denitrifiers and level of soil nitrogen. In the same soils, both soil nitrogen and soil phosphorus were weakly correlated with the presence of acidobacteria. While microbial communities in dairy pasture soils were influenced by management practices, bacteria, archaea and fungi did not all respond in the same way to soil chemical fertility.

Considerable heterogeneity in estimates of microbial dominance in dairy pasture soils was observed. Therefore, additional soil sampling approaches were adopted to minimise effects of soil type or climatic variables. This included sampling experimental plots with a range of management practices at a single field location (Victoria) and the establishment of simulated pasture swards in dairy pasture soils under controlled environmental (glasshouse) conditions which differed in pasture species dominance and fertiliser application (southwest Western Australia).

CONCLUSION

Soil microbial communities in a range of dairy pasture soils demonstrated marked seasonal shifts illustrating the dynamics of nutrient cycling processes in soil. While microbial communities in dairy pasture soils were influenced by management practices, bacteria, archaea and fungi did not all respond in the same way to soil chemical fertility. High-resolution molecular assays were used to identify dominant microbial pathways for the nitrogen cycle in dairy pasture soils but relationships between microbial pathways, soil chemistry and fertiliser use efficiency are complex. There is a need to understand soil biological as well as soil chemical processes for a more complete evaluation of the long-term impacts of dairy pasture management practices on soil fertility.

ACKNOWLEDGEMENTS

This research was supported by Dairy Australia. The Department of Primary Industries Victoria (DPI-Victoria) and The Department of Agriculture and Food Western Australia (DAFWA) both assisted by locating dairy sites for study. Dairy producers in WA kindly provided access to field sites.

REFERENCES

APPENDIX 4: PHENOTYPING STOMATAL RESPONSE COMBINED EFFECTS OF HEAT AND DROUGHT VIA AN AUTOMATED R-PYTHON GENERATED TRANSPERSION MODEL OF MULTI-SPECTRAL DATA (PROOF OF CONCEPT).

The following poster was presented at the Murdoch University Agricultural Symposium. The initial concept for the research project one in Manuscript 3, combined with the data from the benchmarking experiments concerning phenotype measurement and comparison to known models associated with plant responses to combined abiotic heat and drought stress. The work is a proof of concept which was successfully executed and got considerable good feedback from more senior members of the Western Australian farming community. Again, as with the methods of Manuscript 3 the same problems concerning the software were experienced due to the ownership of the germplasm, although the intellectual property of the software remains available (now under Karl Corporation).
Phenotyping stomatal response combined effects of heat and drought via an automated R-Python generated transpiration model of multi-spectral data (Proof of concept)

Svatos K.B.W.1, Diepeveen D.1,2,3, Hill C.1,2, Abbott L.K.4, Li C.1
1-Murdoch University, 2-Department of Primary Industries and Regional Development, 3-Curtin University, 4-The University of Western Australia.

Background Theory:
The internal energy status of plant systems follows the equation,

$$T_s = \sqrt{\frac{T_{sb}^4 - (1 - \varepsilon)T_b^4}{\varepsilon}}$$

Where, T_s=surface temp. T_{sb}=brightness temp. T_b=background temp. ε=overall emissivity.

Therefore given,

$$J = \frac{\gamma T_{sv} + s}{\gamma T_s}$$

We can calculate $J_*=stomatal conductance index, \gamma=a phychrometric constant, r_{sv}=canopy resistance to momentum change, s=slope of saturated vapour pressure at temperature T0 vs T_0, r_{HR}=Leaf resistance to sensible heat transport and radiative heat loss.

Methods (Proof of Concept):

<table>
<thead>
<tr>
<th>Variety</th>
<th>Treatment</th>
<th>Soil Type</th>
<th>Variety</th>
<th>Treatment, Soil Type</th>
</tr>
</thead>
<tbody>
<tr>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
</tr>
</tbody>
</table>

References:

APPENDIX 5: AUSTRALIAN DRONE TECHNOLOGY ASSISTING A SIGNIFICANT STEP IN STEP IN CROP TOLERANCE TO HEAT AND DROUGHT STRESS

The following published white paper was written as part of the research project one in Manuscript 3 and published in the Future Directions Journal. Consider the following link for more information. http://www.futuredirections.org.au/publication/australian-drone-technology-assisting-significant-step-crop-tolerance-heat-drought-stress/

Concerning the white paper itself, the results from the analysis were initially completed by Scientific Aerospace, for all of the locations except for Katanning. The Katanning work was completed by Scientific Aerospace for the author for the explicit use in the PhD. Parts of the summary, analysis and case study were completed by the author under the direction of Geoff Trowbridge (Retired). The conclusion drawn is the vision of both authors and the content of which was not altered by either.
Australian Drone Technology Assisting a Significant Step in Crop Tolerance to Heat and Drought Stress

Mr Karl Svatos, PhD Candidate Murdoch University.
Mr Geoff Trowbridge, Managing Director of Scientific Aerospace & FDI Associate.

Key Points

- Early identification of plant stresses is essential to ensuring maximum crop yield.
- Unmanned aerial survey drones equipped with sensors are increasingly being used by corporate farmers, agronomists, biologists, and environmental ecologists to make important production decisions.
- Aerial survey tools such as NDVI, thermal and multispectral imagery are now available to farmers and have the potential to boost crop yield and reduce production costs.
- Researchers have been working to discover ways to make Australian farms more capable of coping with a range of biological and non-biological stresses using unmanned aerial vehicles or drones.
- In the future automated systems will become a routine part of agricultural production as a tool for promoting productivity and efficiency.

Summary

Early identification of plant stress is essential to ensuring maximum crop yield. A detailed and timely visualisation of a cultivated crops can identify many plant stresses and can be vital to informed quality decision making. Research now being undertaken at Murdoch University in Western Australia and conducted with technical assistance from aerial imagery by Perth based company, Scientific Aerospace, is providing a precise new tool in the farmers’ toolbox for increasing profits.

Analysis

Researchers have been working to discover ways to make Australian farms, both irrigated (market garden, viticulture, dairy), and non-irrigated (broadacre grain and livestock) more able to cope with a
range of biological and non-biological stresses such as heat, frosts, drought and pests’ events using unmanned aerial vehicles (UAVs) or drones.

UAV based technologies can provide an increasingly wide range of sophisticated data. Farmers can now access survey quality contour and three-dimensional mapping, digital surface and terrain models, plant counts, plant height, or geotagged vegetation index maps. The processed data is made visible in various ‘layers’ so that farmers get very graphic answers to specific questions about, for example, soil temp, soil moisture, crop nutrient status, biomass prediction, grain yield prediction, and other traits. Data processing beyond the capacity of a home computer can now be professionally provided on site via a datalink.

The integrated system technologies needed to provide information of this fidelity have been locally developed for precision, targeted, agricultural surveying. Data sources include NDVI, thermal, multispectral and a new miniature spectrometer recently developed by the University of Western Australia’s microelectronics laboratories. The acquired raw data images are processed and enhanced using third party software, such as Pix4D
and Context Capture. Sophisticated scientific analysis is required to make use of the information contained within the raw data packages. The analytical service has been developed in collaboration with Murdoch University.

![Figure 3. Further processing of the same area revealing optimal sites for installing Leaky Weirs.](image)

Source: the author.

Scientific Aerospace has made a significant research and development investment to integrate the optical output with the third party and drone software. This is achieved using Application Programming Interfaces (APIs) developed and built in house. Scientific Aerospace also utilises a custom application for a computer tablet, tailored prior to each mission for a specific flight based on each client’s requirements.

![Figure 4. In-field assessment of aerial imagery and data processing.](image)

Source: the author.

Case Study in Collaboration - Assessing Heat Stress Resilience in Wheat and Barley Crops
With the aim of discovering which wheat and barley varieties and soil combinations provide the best resilience to a combination of non-biological stress (heat and drought), Scientific Aerospace teamed up with Murdoch University researcher and PhD candidate, Karl Svatos, to help develop a ‘proof of concept’ drone experiment. This was performed in the field at the Katanning Research Station. The research is an extension of study in evaporation, transpiration and drought stress with ground based thermal remote sensing in agricultural cultivation. For simplicity, the algorithm for the internal energy status of plant systems is not shown here, but involves several temperature parameters, emissivity, heat transport and leaf resistance.

Data Capture

Two drones were equipped with either the NDVI multispectral and optical lenses or a thermal camera. Two flights were made at the coldest time of day (dawn) and later in the afternoon at the hottest time of the day. Ground truth testing was also used to provide reference absorption, reflectance and saturation benchmarks, so that any deviation in the raw drone data could be corrected during data processing. The UAV was flown at altitudes to capture high resolution data specific to each flight requirement. The sensors looked vertically and sideways to capture three-dimensional imagery.

![Figure 5. The UAV in flight over the Rye Wheat and Barley Test Field at Katanning. Source: the author.](image)

Data Processing

The raw data was gathered and transferred to the on-board computer and saved for processing after the flight. Geographically tagged photos were extracted from the files and a grid map was overlain on data. These reference photos were then used to determine individual aspects of the traits in question specific to each plot in the trial. The aerial data may be further processed using index map solutions such as SMS, AgPixel, ArcGIS, and other GIS systems to produce other data ‘layers’ that provide further, value-added insights. The results from the various images (NDVI, thermal, RGB, multispectral) are then used to identify which wheat and barley varieties and soil combinations provide the best resilience to heat stress in the field. The researchers
hope that this may then be used to produce better varieties suited to the environment where the cultivation is located.

Conclusion

Scientific Aerospace envisions a world where automated systems are a routine part of agricultural production as a tool for promoting productivity and efficiency. It is the vision of the project partners that the farmer, in the paddock, will be able to access sophisticated, real time, analysed data on the stress condition of a crop that will enable a timely response and thus, optimise production. This will be achieved by collaborating in the development of a systems engineered software suite that will autonomously incorporate and integrate climate records, rainfall, meteorological logs and real time drone acquired, crop data. Prescription maps will be generated which can then be uploaded to a Farm Management Information System (FMIS) system or directly to irrigation systems, seeders, spreaders, tractors, combine harvesters or headers for sowing, watering, fertilising, nitrogen optimisation, weed control yield monitoring and harvest timing management in real time.

About the Author: Geoff Trowbridge is an internationally experienced program manager in the aviation, telecommunications, manufacturing and resources sectors. A former weapons system engineer in the RAAF, he subsequently held senior management roles and directorships with Optus, Siemens, Ernst & Young, Oracle and BHP Billiton. He has also worked in research and development facilities in London, Chicago and at Curtin University. He lives in Perth, WA and was appointed CEO of Scientific Aerospace in November 2016. Scientific Aerospace is the only designer and manufacturer of drones in Australia.

Any opinions or views expressed in this paper are those of the individual author, unless stated to be those of Future Directions International.
APPENDIX 6: PRELIMINARY ASSESSMENT OF EMPLOYING HYPERSONTRAL IMAGERY TO DETECT MINERALS INDICATIVE OF URANIUM ORE FROM UNMANNED AERIAL VEHICLES

An original work compiled for General Electric USA concerning the challenges associated with prospecting for high grade uranium ore bodies using drone technologies and state of the art imaging devices, including for non standard applications. Concerning contributions; parts of the aims, the drafting of the document, parts of the executive summary, the analyses and strategic information was compiled by the author including the recommendations, with funding provided by Scientific Aerospace whilst consulting for Karl Corporation.

CTO Joshua Portlock now of Electro.Aero provided the images from Headwall, and the analysis of payload ability concerning the aims as well as aspects of costing; which were partially outsourced to Arbor Carbon. Mr. Portlock oversaw the strategy, and provided an opportunity.
Preliminary Assessment of Employing Hyperspectral Imagery to Detect Minerals Indicative of Uranium Ore from Unmanned Aerial Vehicles

Prepared for General Electric by Joshua Portlock & Karl Svatos
(with assistance from Arbor Carbon)

Aims:

1. Demonstrate hyperspectral determination (presence, absence, and relative concentration) of a range of ore bodies and the minerals associated with or containing uranium
2. Identify the best Hyperspectral Imaging Sensors (HIS) available at present
3. Identify the physical limitation of flying a UAV equipped with the HIS
4. Highlight the current challenges associated with a hyperspectral analysis
5. Recommend options for further pursuing this capability

Executive Summary:

There are many potential benefits to using hyperspectral sensors attached to drones, and the limitations are numerous but feasible nonetheless. Without due consideration of the physical limitation of the sensor data itself, one might assume that the downstream analysis required would be able to fix the flaws. This is not the case because in many instances the limitation of the sensor is not the sensor but the lack of adequate processing power within the instrument, which through no fault of the designer ends up that the device cannot perform to spec. Whether this would be a factor within the implementation of such a setup in the exploration geology field, is a significant consideration for potential investment. The scientific theory of hyperspectral imaging is highlighted, and the major known general geological studies on uranium deposits that have been characterised via drones are summarised. It must be underscored that without further geological information at the formation/era/sedimentary facies levels it is hard to interpret what sorts of mineralogical deposits/sediments/silicate/ores are located within the exploration area. In this instance, this preliminary investigation has generalised as much as possible to define what is feasible from a commercial point of view.
Introduction:

Hyperspectral imaging spectroscopy, splitting reflected light into 100s of spectrally discrete bands, is the only technology capable of mapping the landscape from a single sensor, once calibrated. This physical phenomenon allows for more significant characterization of material than broadband or multispectral imaging allows (Figure 1).

![Figure 1. Difference between Broadband, Multispectral and Hyperspectral bands of data](image)

Near-infrared (NIR) (700–1400 nm) and short-wavelength infrared (SWIR) (1400–2500 nm) spectroscopy, has long been used in the field of earth sciences for applications such as mineral identification, exploration, remote sensing and geo-metallurgy (Andrews et al., 2017).

Review of Literature and Scientific Scope:

Baron et al. (2014) first discovered uses of NIR spectra to determine coffinite-uranium thorite ((U,Th)SiO$_4$)-thorite. They noted band position shifts were associated with the different ionic radii between U and Th reflecting differences in the crystal structure while also revealing NIR to be a suitable method for identifying coffinite in natural samples. Although Andrews et al. (2017) attempted to quantify coffinite in a mineral mixture, some uncertainty existed when obtaining SWIR measurements (1500-1550nm), mainly from more complex ores.

Analysis can be hampered by dark coloured rocks yielding spectral measurements with no discernible peaks, possibly due to the abundance of dark-coloured minerals (e.g. uraninite (UO$_2$), the primary uranium ore mineral often found in association with coffinite). However, the main discerning element in Andrews et al., (2017) was that diagnostic peaks associated with U were not restricted to silicate minerals which they suggested would require determination of the effect of uranium in other mineral species (a much larger task).
Research has been undertaken using high to medium resolution multispectral satellite data in the VIS-NIRSWIR region for uranium exploration and geological mapping, with band combinations in the SWIR and Thermal Infrared (TIR) the most useful for revealing the occurrence of uranium ore (Mishra and Rao, 2015; Dwivedi et al., 2016). Mathieu et al., (2017) showed unconformity type uranium deposits were spatially-linked to unconformities between the sedimentary basin and underlying basement rock. Hydrothermal fluid-rock interactions that produce extended alteration envelopes were used to target specific mineralization and thus, may be essential guides for uranium exploration. This type of survey for mineral identification was performed using a calibration method based on positions and shapes of absorption features in characteristic SWIR spectral windows (1300-2500nm spectral range).

Core samples were scanned in the laboratory under controlled lighting conditions with a hyperspectral HySpec SWIR-320m line-scanning camera (239 bands and 0.5 x 0.5mm pixel size), analysed, and interpreted for mineralogy, with calibration using petrography by optical microscopy, (Figure 2).

A computer algorithm was developed to classify and discriminate minerals based on both the position and the depth of diagnostic absorption bands. Spectral ranges were defined to classify minerals based on their spectral features (Figure 3).
Xu et al. (2017) used a FieldSpec4 ground-based spectrometer to obtain hyperspectral alteration information from drill cores from a uranium deposit in China. They successfully measured illite, hematite, limonite, montmorillonite, carbonate and chlorite from different sections. They also found that the SWIR region from 1000-2500nm was most useful and that the alteration minerals illite, hematite and fluorite could be used as surface indicators of uranium at depth to guide deep uranium exploration. It is important to note that this study was of drill cores using a spectrometer under controlled conditions and the field spectrometer is not an imaging device, and has a spectral resolution of 3nm in the range of 350-1050nm and 10nm in the range of 1050-2500nm (Figure 4. and Figure 5. (a-d)). We are unaware of the current status of the core logging if any has been done, and if the major mineralogical datasets from the cores have been taken either. However, without any information on the dimensions of the site, the surrounding geology, formations (sedimentary stratigraphic maps), and soil transformation information, it is difficult to proceed. It may be that isotope decay using sensors with the hyperspectral camera data will provide more information.
Figure 4. Processing workflow to analyse the drill cores hyperspectral data from Xu et al. (2017).

Figure 5. (a-d) Spectral curves of the investigated alteration minerals (500–2500 nm): (a,c) spectral curves of the alteration minerals measured from the drill cores of the Baiyanghe uranium deposit; and (b,d) spectral curves from the reference spectral library of the United States Geological Survey (USGS).

Figure 5. Spectral curves of investigated alteration minerals. The significance of this data is that it highlights a potential new method based on drill cores measured in the field. A potential cost-saving versus using a controlled indoor environment.
One area of concern regarding surface-based detection from passive airborne Hyperspectral sensors is that leaf litter and biomass on the surface would limit the sensors ability to detect any mineral from the rocks if not exposed. Therefore, it would be recommended that hyperspectral surveys are only carried out over recently cleared land with relatively freshly exposed rock. Furthermore, the oxidation layer would reduce the spectral information detectable on the surface from the air, so it would be worth investigating a technique of scanning laid out cores with an aerial hyperspectral sensor, to avoid the cost and time of shipping core samples to a laboratory.

Customer Specific Information and Considerations (Heathgate):

The large scale of Heathgate’s Uranium deposits in S.A. is shown below (Figure 6).
Heathgate have indicated they are primarily interested in minerals that have responses in the SWIR bands (such as silicates) and then the VNIR band (iron oxides). From various discussions with the team Heathgate, there were three primary use cases identified for Hyperspectral imagery by drone including:

1. Surface scanning of a recently cleared area for prospecting potential dig sites.
2. Environmental assessments to ensure no contaminants were left on the surface.
3. Core sample surveys to assess the mineral content of the extracted and laid out cores.

While there are different resolution and mission flight planning considerations for each application, they all have the overall need to accurately detect minerals in the SWIR and VNIR bands from the air, relying solely on passive light from the sun. Therefore, extensive ground-truth calibration and testing will be required in order to achieve the required mineral characterization and detection. Spatial resolution, spectral band spacing and signal to noise ratios will all become highly critical in determining if adequate information can be obtained from the airborne sensor.

Current Hyperspectral Sensor Options (UAV/RPA mountable):

There are many multispectral and hyperspectral sensor manufacturers offering sensors small enough to be mounted on a UAV/RPA platform. However, full integration with Global Positioning Systems (or better differential GPS), Inertial Motion Sensors (Units, a.ka. IMU) and power is generally required. Within the payload weight capacity of the DJI M600 Pro, there are several turn-key options, however the heavier the payload, the lower the flight time and corresponding area coverage (Figure 7).

![Figure 7. M600 flight time versus payload weight](attachment:image.png)
More than a dozen different hyperspectral sensors were explored from several manufacturers. However, based on the available information, it is apparent that hyperspectral data in the range of 400-2500nm range is required. Therefore, only one supplier, Headwall Photonics, was identified within the payload weight capacity of the DJI M600 Pro and had enough spectral range to detect the range of minerals of interest in the region.

Headwall Photonics:

Headwall is one of the leading producers of spectral instrumentation for OEMs, based out of Massachusetts USA. The Company's focus is on diffractive optics, in the form of very precise holographic diffraction gratings. These components and the spectral modules/spectrometers are available to OEMs in industries such as colour measurement and bio-medicine. Headwall also produces imaging sensors that cover spectral ranges from UV-VIS to SWIR, as illustrated below:

![spectral ranges](image)

Given the focus of research has been around the VNIR and SWIR bands, there are three main cameras within the M600 Pro payload weight range that we could consider.
Figure 8. Headwall Nano HyperSpec. This hyperspectral sensor costs a little over $100,000 and includes an integrated data logging onto a 1TB storage device. The table and images below illustrate the capability.

<table>
<thead>
<tr>
<th>Nano-Hyperspec®</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength range</td>
<td>400-1000 nm</td>
</tr>
<tr>
<td>Spatial bands</td>
<td>640</td>
</tr>
<tr>
<td>Spectral bands</td>
<td>270</td>
</tr>
<tr>
<td>Dispersion/Pixel (nm/pixel)</td>
<td>2.2</td>
</tr>
<tr>
<td>FWHM Slit Image</td>
<td>6 nm</td>
</tr>
<tr>
<td>Integrated 2nd order filter</td>
<td>Yes</td>
</tr>
<tr>
<td>f/#</td>
<td>2.5</td>
</tr>
<tr>
<td>Layout</td>
<td>Aberration-corrected concentric</td>
</tr>
<tr>
<td>Entrance Slit width</td>
<td>20 μm</td>
</tr>
<tr>
<td>Camera technology</td>
<td>CMOS</td>
</tr>
<tr>
<td>Bit depth</td>
<td>12-bit</td>
</tr>
<tr>
<td>Max Frame Rate (Hz)</td>
<td>350</td>
</tr>
<tr>
<td>Detector pixel pitch</td>
<td>7.4 μm</td>
</tr>
<tr>
<td>Max Power (W)</td>
<td>13</td>
</tr>
<tr>
<td>Storage capacity</td>
<td>480GB (~130 minutes at 100 fps)</td>
</tr>
<tr>
<td>Weight without lens, GPS (kg)</td>
<td>0.5</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>0°C to 50°C</td>
</tr>
</tbody>
</table>
While the Nano HyperSpec is compact and light enough to fit in the M600 Pro’s gimbal, it only covers spectrum up to 1,000 nm, which can help distinguish differences between vegetation and general minerals. Still, it would not have the spectral fidelity to identify the differences between different minerals in the SWIR bands needed.

Headwall Micro HyperSpec:

![Image of Headwall Micro HyperSpec](image)

Figure 9. Headwall Micro HyperSpec. This hyperspectral camera costs approximately $250k in the SWIR configuration, however, can only cover the higher 900-2500 nm range and needs a separate hyper core data logger. As can be seen in the subsequent table, this hyperspectral camera can be configured with a variety of different sensor band ranges, however, none that are broad enough to cover the full spectrum needed (Table below)

<table>
<thead>
<tr>
<th>Spectral Range</th>
<th>VNIR (400-1000 nm)</th>
<th>NIR (900-1700 nm)</th>
<th>Extended VNIR (600-1700 nm)</th>
<th>SWIR (900-2500 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-Hyperspec Configuration</td>
<td>A-Series</td>
<td>E-Series</td>
<td>640</td>
<td>320</td>
</tr>
<tr>
<td>Focal Plane Array</td>
<td>Silicon CCD</td>
<td>sCMOS</td>
<td>InGaAs</td>
<td>MCT</td>
</tr>
<tr>
<td>Pixel Pitch (microns)</td>
<td>7.4</td>
<td>6.5</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Aperture</td>
<td>F/2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slit Length (mm)</td>
<td>10.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispersion/ Pixel (nm)</td>
<td>1.0</td>
<td>1.63</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Entrance Slit Width (µm)</td>
<td>20</td>
<td>25</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>FWHM Slit Image (mm)</td>
<td>5.8</td>
<td>5.6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Spectral Bands</td>
<td>324</td>
<td>369</td>
<td>334</td>
<td>67</td>
</tr>
<tr>
<td>Spatial Bands</td>
<td>1004</td>
<td>1000</td>
<td>640</td>
<td>320</td>
</tr>
<tr>
<td>Aberration-Corrected</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Frame Rate (Hz)</td>
<td>932</td>
<td>250</td>
<td>120</td>
<td>345</td>
</tr>
<tr>
<td>ADC Bit Depth</td>
<td>12</td>
<td>16</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Cooling</td>
<td>No</td>
<td>TE-cooled</td>
<td>TE-cooled</td>
<td></td>
</tr>
<tr>
<td>Digital Output Format</td>
<td>Base CameraLink</td>
<td>Full CameraLink</td>
<td>Base CameraLink</td>
<td></td>
</tr>
<tr>
<td>Weight without WRs (lbs/kg)</td>
<td>1.5 / 0.7</td>
<td>2.4 / 1.1</td>
<td>1.9 / 0.9</td>
<td></td>
</tr>
<tr>
<td>Max. Power (W)</td>
<td>6.5</td>
<td>13.2</td>
<td>2.5</td>
<td>4</td>
</tr>
</tbody>
</table>
Headwall HyperSpec Co-Aligned dual VNIR-SWIR Sensor:

Figure 10. Headwall Co-Aligned Dual VNIR-SWIR Sensor. This dual sensor hyperspectral camera costs around $340k AUD plus GST and is capable of capturing from 400 to 2500 nm spectrum. The key characteristic is the two line-scan sensors in this system are pointed at the same target and logging is time synchronized.

Figure 11. Co-Aligned VNIR/SWIR sensor mounted on M600 Pro rigidly without gimbal.

This dual VNIR/SWIR sensor gives the best of both worlds, covering the VNIR and SWIR bands where minerals can be identified (Figure 11 and following spec table).
Unfortunately, the spatial resolution is quite limited at 640 wide and is relatively heavy (2.83kg), so flight time suffers. Although long, it does conveniently still fit under the M600 Pro, however, it is too large to fit in the standard gimbal. Correspondingly, the coverage and forward resolution will be adversely affected by the flight plan and wind conditions. We asked Headwall for further information about the Signal to Noise Ratio (SNR) of the dual sensors.

The following information has been provided by Headwall:

1.) SIWR Spec Table.
2.) VNIR Spec Table.
3.) Nano SNR calibration curve (nm).
4.) SWIR 640 micro HS calibration curve (nm).
<table>
<thead>
<tr>
<th>SWIR Specification</th>
<th>Value</th>
<th>Unit</th>
<th>Comment</th>
<th>VNIR Specification</th>
<th>Value</th>
<th>Unit</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerosol Model</td>
<td>Rural/VIS, 23 km</td>
<td></td>
<td></td>
<td>Aerosol Model</td>
<td>Rural/VIS, 23 km</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albedo</td>
<td>25</td>
<td>Percent</td>
<td>Albedo of Forest or grasslands</td>
<td>Albedo</td>
<td>25</td>
<td>Percent</td>
<td>Albedo of Forest or grasslands</td>
</tr>
<tr>
<td>Altitude</td>
<td>1000</td>
<td>Meters</td>
<td></td>
<td>Altitude</td>
<td>122</td>
<td>Meters</td>
<td></td>
</tr>
<tr>
<td>Band Model</td>
<td>15_2009</td>
<td></td>
<td></td>
<td>Band Model</td>
<td>15_2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOV, Angular</td>
<td>21.7</td>
<td>Degrees</td>
<td></td>
<td>FOV, Angular</td>
<td>13.85</td>
<td>Degrees</td>
<td></td>
</tr>
<tr>
<td>FOV, Linear</td>
<td>284</td>
<td>Meters</td>
<td></td>
<td>FOV, Linear</td>
<td>33.96</td>
<td>Meters</td>
<td></td>
</tr>
<tr>
<td>Frame Rate</td>
<td>110</td>
<td>Hz</td>
<td></td>
<td>Frame Rate</td>
<td>120</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>Ground Speed</td>
<td>66</td>
<td>m/s</td>
<td>To get square pixels</td>
<td>Ground Speed</td>
<td>7.16</td>
<td>m/s</td>
<td>To get square pixels</td>
</tr>
<tr>
<td>IPD, Angular Cross Track</td>
<td>0.6</td>
<td>mrad</td>
<td></td>
<td>IPD, Angular Cross Track</td>
<td>0.435</td>
<td>mrad</td>
<td></td>
</tr>
<tr>
<td>IPD, Linear Cross Track</td>
<td>600</td>
<td>mm</td>
<td>Also known as GSD.</td>
<td>IPD, Linear Cross Track</td>
<td>53.07</td>
<td>mm</td>
<td>Also known as GSD.</td>
</tr>
<tr>
<td>IPD, Linear Along Track</td>
<td>600</td>
<td>mm</td>
<td></td>
<td>IPD, Linear Along Track</td>
<td>53.07</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Lens EFL</td>
<td>25</td>
<td>mm</td>
<td></td>
<td>Lens EFL</td>
<td>17</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Look Angle</td>
<td>180</td>
<td>Degrees</td>
<td>Nadir (looking at the ground is 180')</td>
<td>Look Angle</td>
<td>180</td>
<td>Degrees</td>
<td>Nadir (looking at the ground is 180')</td>
</tr>
<tr>
<td>Peak Well Depth Usage</td>
<td>11.9</td>
<td>%</td>
<td></td>
<td>Peak Well Depth Usage</td>
<td>92.7</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Solar Zenith Angle</td>
<td>23.5</td>
<td>Degrees</td>
<td></td>
<td>Solar Zenith Angle</td>
<td>23.5</td>
<td>Degrees</td>
<td></td>
</tr>
</tbody>
</table>

Nano SNR

\[FR = 135Hz,\ ALT = 400ft, SZA = 23.5, LA = 180, R = 25 \]
Acquisition of data using the M600 with VNIR-SWIR dual sensor:

Requests for information from Headwall about specifics for acquisition revealed some critical information as follows:

- The DJI Matrice 600 works independently from the operations software of the Hyperspectral system, including flight planning and triggering.
- The camera has its own software which determines the operation parameters of the camera, frame rate, exposure, frames per cube when the data is captured.
- The camera has its own GPS/IMU (Applanix) which is used for geotagging rather than using the M600 data.

Once the flight is complete, the data cubes can be downloaded along with the GPS/IMU data (not embedded to the frames) for subsequent processing (e.g. orthorectification, radiance calibration and or reflectance conversions) and analysis. The system is too large to be stabilised with a gimbal on M600, so without this, wind and other conditions (e.g. roll, pitch, vibration) can have a significant impact on the quality of the data. We were supplied with some sample images from the SWIR and VNIR sensors, and misalignment artefacts are highly noticeable in these images, which is a major limiting factor and cause for concern. The proposed application of scanning the 9 cm wide diameter core samples requires a maximum of 4.5cm ground sampling distance (GSD) to ensure the cores information is identifiable. Given the relatively
low spatial resolution of the sensor, it will require low altitude acquisition and the generation of large quantities of data (Table 3).

Table 2: In order to acquire the data that can be geometrically and radiometrically calibrated we will need to create a series of spectral and radiometric targets that can be strategically placed in the flight path so that subsequent geometric and radiometric calibration of the data can be completed to deliver meaningful data for analysis. Headwall has provided some information that suggests their SpectralView software product can be used for the acquisition of airborne data (red diamonds). We do not yet have any experience in using this software suite.

<table>
<thead>
<tr>
<th>Functionality</th>
<th>Operating</th>
<th>Airborne</th>
<th>Ground Operations</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acquisition</td>
<td>1008A-00100</td>
<td>1008A-00101</td>
<td>1008A-00102</td>
<td>1008A-00103</td>
</tr>
<tr>
<td>Sensor operation</td>
<td></td>
<td></td>
<td></td>
<td>set frame rate and integration time; collect white and dark references</td>
</tr>
<tr>
<td>Waterfall display</td>
<td></td>
<td></td>
<td></td>
<td>Real-time waterfall video feed from sensor</td>
</tr>
<tr>
<td>Data cube generation</td>
<td></td>
<td></td>
<td></td>
<td>Output in a standard .bil format, white and dark reference processing</td>
</tr>
<tr>
<td>Motion control</td>
<td></td>
<td></td>
<td></td>
<td>Control of supported devices</td>
</tr>
<tr>
<td>Data cube and spectral viewing</td>
<td></td>
<td></td>
<td></td>
<td>Open processed cube, visualize spectral map of scanned area</td>
</tr>
<tr>
<td>GPS data integration</td>
<td></td>
<td></td>
<td></td>
<td>When using compatible GPS/INS</td>
</tr>
<tr>
<td>Polygon tool and flight planning</td>
<td></td>
<td></td>
<td></td>
<td>Sets the flight parameters</td>
</tr>
<tr>
<td>Google® Map overlay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthorectification</td>
<td></td>
<td></td>
<td></td>
<td>Straightens ground objects using GPS/IMU information</td>
</tr>
<tr>
<td>USGS digital elevation maps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cube mosaic</td>
<td></td>
<td></td>
<td></td>
<td>Stitch cubes together</td>
</tr>
<tr>
<td>Radiance calibration and conversion</td>
<td></td>
<td></td>
<td></td>
<td>Convert raw data to radiance (must purchase radiometric calibration)</td>
</tr>
<tr>
<td>Reflectance & calibration conversion</td>
<td></td>
<td></td>
<td></td>
<td>Convert radiance to reflectance (white reference required)</td>
</tr>
<tr>
<td>Classification Module (beta release)</td>
<td></td>
<td></td>
<td></td>
<td>Tag based on spectral content, segmentation, spectral angle mapping</td>
</tr>
</tbody>
</table>

Analysis of data using the M600 with VNIR-SWIR dual sensor:

We consider the setup of the system and acquisition of the data the easy component of this project. The subsequent processing of large quantities of data in the form of hyperspectral cubes will be complex and time-consuming, followed by image analysis to precisely classify and map geological features of interest. Given we only have experience processing and analysing hyperspectral data from non-headwall sensors, we cannot ascertain the format and what is required to carry out pre-processing of the headwall hyperspectral cubes. Information obtained from Headwall suggests their SpectralView software package enables the conversion of raw
data to radiance to reflectance with radiometric calibration and white reference and some classification can be carried out. We have requested a short-term licence of the software and data cube so that we can determine the workflow and provide an estimate of time for processing the data for subsequent analysis.

Following a review of the software and sample data, we can develop a detailed workflow for the project, including the Image Processing component and subsequent classification. This will involve the utilisation of publicly available and proprietary algorithms for classification of mineral mixtures, further reduction of residual noise, comparative analysis of reference and acquired endmembers, maximisation of SNR, pixel-level classification, and quantification of minerals at the sub-pixel level.

Subsequent analysis will produce geospatial datasets showing the abundance of minerals across the region of interest, and these datasets will require ground validation through core drilling or other methods (e.g. TEM, XRD, XRF, XRT, plasma-coupled IR spectroscopy, synchrotron nuclear spin magnetic resonance etc). Further scoping is required to estimate the automation of the Headwall image processing suite. However, it has been reported as possible by industry partners.

Figure. 12. Proposed Arbor Carbon’s Carboncore Cortex X8 UAS for gimbal stabilizing the dual sensor payload
Conclusion and Recommendation:

- Headwall Photonics VNIR-SWIR is the only sensor suitable for this project at this stage.
- The sensor should employ a stabilising gimbal to enable conditions suitable for the collection of the highest quality of data available. Given the M600 Pro gimbal cannot fit the dual VNIR/SWIR sensor, ScientificAerospace propose designing a suitable gimbal to be mounted underneath Arbor Carbon’s CarbonCore Cortex X8 heavy-lift UAS (Figure 12).
- The next phase should test Headwall software and data cube to determine workflow before proceeding further.
- Explore the option to hire the sensor from Headwall rather than purchase to evaluate and start characterization.
- Once Heathgate provides initial feedback about this preliminary assessment, a formal proposal for the next phase will be prepared for consideration to proceed.
APPENDIX 7: PHD SCHOLARSHIP IN DIGITAL CONNECTIVITY AND BIG-DATA ANALYTICS IN AGRICULTURE

These projects were largely made possible by the author linking already established, internationally recognised, research groups; by creating science-driven business relationships.

PhD Scholarship in Digital Connectivity and Big Data Analytics in Agriculture

We are seeking up to four highly motivated PhD candidates to study at Murdoch University on solutions to digital agriculture issues with the Australian food industry.

Murdoch University is part of a Digital Agricultural Collaboration (DAC) between universities, the Department of Primary Industry and Regional Development (DPIRD) and industry collaborators to facilitate adoption of digital technologies in Western Australia.

One of the activities in the DAC is a collaboration between Nokia, Pivotal and DPIRD to develop sensor networks for environmental monitoring. Agricultural management is a key issue for sustaining future production and with better connectivity and decision-making tools for managing micro-climates within paddocks and farms, smarter decisions can be made to optimise production.

For the adoption of smart technology to occur, technological solutions need to be developed to transfer and process sensor information rapidly and securely for opportunistic decision making.

Scholarship 1

Utilising the latest in telecommunication technologies - Nokia NDA C/IMPACT technology and Pivotal mobile technology - and the research capacity from Murdoch University and DPIRD to develop micro-sensors (battery powered) that can stream data securely via mobile networks or drones flown overhead. This research will include evaluating secure data processes for storing and transferring micro sensor data via mesh networking of micro-sensors to conserve energy.

Scholarship 2

Work on processing of thermal and multifrequency imagery (e.g. collected using Nokia and Pivotal technology) for understanding thermal properties of crop canopies in agricultural areas. This will leverage advanced image processing and AI machine learning techniques. The project will also include evaluating the effectiveness of on-ground, drone and satellite imagery.

Scholarship 3

Evaluate embedded IoT for near real-time (edge) decision making. This will likely be done with moveable micro-sensors using robotic techniques to target opportunistic events in landscapes. For example, this may be done via drones shifting sensors based on an AI information system to provide increased precision about a specific geographic location when a crop event is occurring. The candidate will need to develop an in-depth understanding of big data analysis and building smart knowledge-based and IoT embedded cloud ecosystems.

Scholarship 4

This PhD scholarship focuses on the automated collection of environmental datasets that complement genomics research by using drones and environmental sensors and through the use of automation software, ML, and AI. The successful candidate will develop analytical skills in glasshouse automation through collaboration between Murdoch University and the Australian DPIRD Research Institute in Japan and field-based research at Department of Primary Industries and Regional Development. It is essential that the candidate has demonstrated, genuine interest in Japanese culture and be able to speak basic Japanese before applying.

Our research team is already working in various aspects of digital agriculture which is led by Prof Michael Jones, Prof Simon Cook, Prof Dean Diepveen and A/Prof Ferdous Sohel including academic support from DAC/industry researchers.

Murdoch University is a research-led internationally recognised University, and the researchers here address some of the major challenges of the 21st Century. Murdoch University’s distinctive research agenda informs leaders, nurtures innovative thinkers and inspires problem-solvers who are capable of tackling the most pressing regional and global challenges. Our world-leading research in sustainable development and renewable energy is being applied to some of the most pressing real world challenges of our time, by skilled researchers who perform and deliver in the most highly demanding work environments.
BIBLIOGRAPHY

Baker K, Dhillon T, Colas I, et al., 2015. Chromatin state analysis of the barley epigenome reveals a higher-order structure defined by H3K27me1 and H3K27me3 abundance. The Plant Journal 84, 111-24. doi: 10.1111/tpj.12963

Brink RA, 1956. A genetic change associated with the R locus in maize which is directed and potentially reversible. Genetics. 41, 872-89. PMCID: PMC1224369

262

265
Goitom E, 2011. Bioaccumulation of lanthanum in marbled crayfish (Procambarus sp.): Wageningen University, Master's Degree. http: edepot.wur.nl

266

Mascher M, Schuenemann VJ, Davidovich U, et al., 2016. Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nature Genetics. doi: 10.1038/ng.3611

Robinson H, Hickey L, Richard C, et al., 2016. Genomic regions influencing seminal root traits in barley. The Plant Genome 9, 0. doi: 10.3835/plantgenome2015.03.0012

282

Sudmeyer RA, Edward A, Fazakerley V, Simpkin L, Foster I, 2016. Climate change impacts and adaptation for agriculture in Western Australia. In. Western Australia: Department of Agriculture and Food, 166. (Bulletin 4-2016.) http: researchlibrary.agric.wa.gov.au

Uga Y, Sugimoto K, Ogawa S, et al., 2013. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics 45, 1097-102. doi: 10.1038/ng.2725

289

