Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Secure two-party association rule mining

Kaosar, M.G., Paulet, R. and Yi, X. (2011) Secure two-party association rule mining. In: 9th Australasian Information Security Conference (AISC '11), 17 - 20 January 2011, Perth, Australia

Link to Published Version:
*Subscription may be required


Association rule mining algorithm provides a means for determining rules and patterns from a large collection of data. However, when two sites want to engage in an association rule mining, data privacy concerns are raised. These concerns include loosing a competitive edge in the market place and breaching privacy laws. Techniques that have addressed this problem are data perturbation and homomorphic encryption. Homomorphic encryption based solutions produce more accurate results than data perturbation. Most previous solutions for privacy preserving association rule mining require the disclosure of intermediate mining results such as support counts and database size to determine frequent itemset. To overcome this weakness we propose a secure comparison technique based on state-of-the-art fully homomorphic encryption scheme, by which we build secure two-party association rule mining protocol. Our solution preserves complete privacy of both parties and it is more efficient than other solutions because there is no need for exponentiation of numbers.

Item Type: Conference Paper
Item Control Page Item Control Page