Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Molecular mapping of QTLs for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (Cicer arietinum L.)

Sabbavarapu, M.M., Sharma, M., Chamarthi, S.K., Swapna, N., Rathore, A., Thudi, M., Gaur, P.M., Pande, S., Singh, S., Kaur, L. and Varshney, R.K.ORCID: 0000-0002-4562-9131 (2013) Molecular mapping of QTLs for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (Cicer arietinum L.). Euphytica, 193 (1). pp. 121-133.

PDF - Published Version
Download (533kB) | Preview
Free to read:
*No subscription required


Fusarium wilt (FW) and Ascochyta blight (AB) are two important diseases of chickpea which cause 100 % yield losses under favorable conditions. With an objective to validate and/or to identify novel quantitative trait loci (QTLs) for resistance to race 1 of FW caused by Fusarium oxysporum f. sp. ciceris and AB caused by Ascochyta rabiei in chickpea, two new mapping populations (F2:3) namely ‘C 214’ (FW susceptible) × ‘WR 315’ (FW resistant) and ‘C 214’ (AB susceptible) × ‘ILC 3279’ (AB resistant) were developed. After screening 371 SSR markers on parental lines and genotyping the mapping populations with polymorphic markers, two new genetic maps comprising 57 (C 214 × WR 315) and 58 (C 214 × ILC 3279) loci were developed. Analysis of genotyping data together with phenotyping data collected on mapping population for resistance to FW in field conditions identified two novel QTLs which explained 10.4–18.8 % of phenotypic variation. Similarly, analysis of phenotyping data for resistance to seedling resistance and adult plant resistance for AB under controlled and field conditions together with genotyping data identified a total of 6 QTLs explaining up to 31.9 % of phenotypic variation. One major QTL, explaining 31.9 % phenotypic variation for AB resistance was identified in both field and controlled conditions and was also reported from different resistant lines in many earlier studies. This major QTL for AB resistance and two novel QTLs identified for FW resistance are the most promising QTLs for molecular breeding separately or pyramiding for resistance to FW and AB for chickpea improvement.

Item Type: Journal Article
Publisher: Springer
Copyright: © 2013 The Authors.
Item Control Page Item Control Page


Downloads per month over past year