Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Genome-based analysis of the transcriptome from mature chickpea root nodules

Afonso-Grunz, F., Molina, C., Hoffmeier, K., Rycak, L., Kudapa, H., Varshney, R.K.ORCID: 0000-0002-4562-9131, Drevon, J-J, Winter, P. and Kahl, G. (2014) Genome-based analysis of the transcriptome from mature chickpea root nodules. Frontiers in Plant Science, 5 . Art. 00325.

[img]
Preview
PDF - Published Version
Download (1MB) | Preview
Free to read: https://doi.org/10.3389/fpls.2014.00325
*No subscription required

Abstract

Symbiotic nitrogen fixation (SNF) in root nodules of grain legumes such as chickpea is a highly complex process that drastically affects the gene expression patterns of both the prokaryotic as well as eukaryotic interacting cells. A successfully established symbiotic relationship requires mutual signaling mechanisms and a continuous adaptation of the metabolism of the involved cells to varying environmental conditions. Although some of these processes are well understood today many of the molecular mechanisms underlying SNF, especially in chickpea, remain unclear. Here, we reannotated our previously published transcriptome data generated by deepSuperSAGE (Serial Analysis of Gene Expression) to the recently published draft genome of chickpea to assess the root- and nodule-specific transcriptomes of the eukaryotic host cells. The identified gene expression patterns comprise up to 71 significantly differentially expressed genes and the expression of twenty of these was validated by quantitative real-time PCR with the tissues from five independent biological replicates. Many of the differentially expressed transcripts were found to encode proteins implicated in sugar metabolism, antioxidant defense as well as biotic and abiotic stress responses of the host cells, and some of them were already known to contribute to SNF in other legumes. The differentially expressed genes identified in this study represent candidates that can be used for further characterization of the complex molecular mechanisms underlying SNF in chickpea.

Item Type: Journal Article
Publisher: Frontiers
Copyright: © 2021 The Authors.
URI: http://researchrepository.murdoch.edu.au/id/eprint/62086
Item Control Page Item Control Page

Downloads

Downloads per month over past year