Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

High-fat diet associated sensitization to metabolic stress in Wfs1 heterozygous mice

Ivask, M., Volke, V., Raasmaja, A. and Kõks, S. (2021) High-fat diet associated sensitization to metabolic stress in Wfs1 heterozygous mice. Molecular Genetics and Metabolism . In Press.

Link to Published Version: https://doi.org/10.1016/j.ymgme.2021.07.002
*Subscription may be required

Abstract

Wolfram syndrome is a rare autosomal recessive disorder caused by mutations in the wolframin ER transmembrane glycoprotein (WFS1) gene and characterized by diabetes mellitus, diabetes insipidus, optic atrophy and deafness. In experimental models the homozygous Wfs1 mutant mice have a full penetrance and clearly expressed phenotype, whereas heterozygous mutants have a less-pronounced phenotype between the wild-type and homozygous mutant mice. Heterozygous WFS1 mutations have been shown to be significant risk factors for diabetes and metabolic disorders in humans. In the present study we analyzed the response of heterozygous Wfs1 mice to high fat diet (HFD) by exploring potential outcomes and molecular changes induced by this challenge. The HFD treatment increased the body weight (BW) similarly both in Wfs1 wild-type (WT) and heterozygous (HZ) mice, and therefore HFD also prevented the impaired BW gain found in Wfs1 mutant mice. In Wfs1HZ mutant mice, HFD impaired the normalized insulin secretion and the expression of ER stress genes in isolated pancreatic islets. These results suggest that Wfs1HZ mice have a decreased insulin response and pronounced cellular stress response due to a higher sensitivity to HFD as hypothesized. In Wfs1HZ mice, HFD increased the expression of Ire1α and Chop in pancreas and decreased that of Ire1α and Atf4 in liver. The present study shows that HFD can disturb insulin function with an increased ER stress in Wfs1HZ mice and only one functional Wfs1 gene copy is not sufficient to compensate this challenge. In conclusion, our study indicates that quantitative Wfs1 gene deficiency is sufficient to predispose the carriers of single functional Wfs1 copy to diabetes and metabolic syndrome and makes them susceptible to the environmental challenges such as HFD.

Item Type: Journal Article
Murdoch Affiliation(s): Centre for Molecular Medicine and Innovative Therapeutics (CMMIT)
Publisher: Elsevier Inc.
Copyright: © 2021 Elsevier Inc.
URI: http://researchrepository.murdoch.edu.au/id/eprint/61758
Item Control Page Item Control Page