Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Molecular and phenotypic diversity among chickpea (Cicer arietinum) genotypes as a function of drought tolerance

Sachdeva, S., Bharadwaj, C., Sharma, V., Patil, B.S., Soren, K.R., Roorkiwal, M., Varshney, R.ORCID: 0000-0002-4562-9131 and Bhat, K.V. (2018) Molecular and phenotypic diversity among chickpea (Cicer arietinum) genotypes as a function of drought tolerance. Crop and Pasture Science, 69 (2). pp. 142-153.

Link to Published Version: https://doi.org/10.1071/CP17284
*Subscription may be required

Abstract

Diversity as a function of drought tolerance may be identified by morphological characters, and molecular tools used to find the most divergent genotypes for breeding programs for drought tolerance in future. The narrow genetic base of chickpea can be circumvented by using diverse lines in breeding programs. Forty chickpea genotypes were studied for their morphological and molecular diversity with an objective of identifying the most diverse drought-tolerant lines. In total, 90 alleles were detected with 3.6 alleles per locus. Polymorphism information content (PIC) values ranged from 0.155 to 0.782 with an average value of 0.4374 per locus. The size of amplified products ranged from 160 bp to 390 bp. Primer TA136 with eight alleles showed the highest PIC value of 0.7825, indicating its ability to differentiate the genotypes at molecular level. DARwin neighbour-joining tree analysis based on dissimilarity estimates was done for the molecular data and sequential agglomerative hierarchical non-overlapping (SAHN) grouping for the morphological data. It could clearly discriminate the tolerance and the sensitivity of genotypes. Two-dimensional principal coordinates analysis (PCoA) plot indicated good diversity for drought tolerance. The genetic similarity coefficients ranged from 0.115 (genotypes BGD72 to ICCV 5308) to 0.828 (genotypes ICCV 10316 to ICCV 92337).

Item Type: Journal Article
Publisher: CSIRO Publishing
Copyright: © 2018 CSIRO
URI: http://researchrepository.murdoch.edu.au/id/eprint/60973
Item Control Page Item Control Page