Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Bio-weathering of granites from Eastern Dharwar Craton (India): a tango of bacterial metabolism and mineral chemistry

Chikkanna, A., Ghosh, D. and Sajeev, K. (2021) Bio-weathering of granites from Eastern Dharwar Craton (India): a tango of bacterial metabolism and mineral chemistry. Biogeochemistry, 153 (3). pp. 303-322.

Link to Published Version: https://doi.org/10.1007/s10533-021-00791-x
*Subscription may be required

Abstract

The bio-weathering process contributes majorly in the physical shaping of earth’s surface. The weathering of mineral is coupled to the formation of new minerals and release of bio-available nutrients for flora as well as microbial communities. Granites from the Eastern Dharwar Craton (EDC) India are felsic plutonic igneous rock composed of nutritive minerals. The major elemental composition of granite is such that, it forms an ancient ecological niche for diverse microbial communities. Interdisciplinary approaches were taken to construct a more comprehensive understanding of potential functional attributes of Actinobacteria in bio-weathering of granite. This work includes molecular characterization of the isolated strains, detecting their granite bioweathering potentials through leaching experiments where Nocardioides showed highest mineral leaching indices with iron (Fe) being the most leached element (~ 6372 ppm). Scanning electron microscopic imaging indicated biofilm formation and Actinobacterial hyphae colonization. Petrographic, XRD and FTIR based study shows formation of secondary minerals (kaolinite, vermiculite and smectite). To further establish the hypothesis of soil formation and nutrition transport, long-term (360 days) microcosm was developed. Deterioration and grain size alternations with increase in clay based minerals (kaolinite, vermiculite) and total protein content was observed. A bioinformatics based functional biodiversity approach in link to global bio-weathering of rocks by the genus Actinobacteria was adopted to understand their distribution patterns and contribution to alterations of rock minerals.

Item Type: Journal Article
Publisher: Springer Verlag
Copyright: © 2021 Springer Nature Switzerland AG.
URI: http://researchrepository.murdoch.edu.au/id/eprint/60652
Item Control Page Item Control Page