Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Preserving new anthelmintics: a simple method for estimating faecal egg count reduction test (FECRT) confidence limits when efficacy and/or nematode aggregation is high.

Dobson, R.J., Hosking, B.C., Jacobson, C.L.ORCID: 0000-0001-9427-1941, Cotter, J.L., Besier, R.B., Stein, P.A. and Reid, S.A. (2012) Preserving new anthelmintics: a simple method for estimating faecal egg count reduction test (FECRT) confidence limits when efficacy and/or nematode aggregation is high. Veterinary Parasitology, 186 (1-2). pp. 79-92.

PDF - Authors' Version
Download (291kB)
Link to Published Version:
*Subscription may be required


As it has been 30 years since a new anthelmintic class was released, it is appropriate to review management practices aimed at slowing the development of anthelmintic resistance to all drug classes. Recommendations to delay anthelmintic resistance and provide “refugia” are reviewed and a simulation model used to find optimum treatment strategies that maintain nematode control. Simulated Australian conditions indicated that a common successful low-risk treatment program was a rapid rotation between a “triple-combination” product (benzimidazole + levamisole + abamectin) and a new high-efficacy drug (monepantel). Where Haemonchus contortus was a threat, moxidectin was required at critical times because of its persistent activity against this parasite. Leaving up to 4% of adult sheep untreated provided sufficient “refugia” for non-selected worms to reduce the risk of selecting for anthelmintic resistance without compromising nematode control.

For a new anthelmintic, efficacy estimated by faecal egg count reduction (FECR) is likely to be at or close to 100%, however using current methods the 95% confidence limits (CL) for 100% are incorrectly determined as 100%. The fewer eggs counted pre-treatment, the more likely an estimate of 100% will occur, particularly if the true efficacy is >90%. A novel way to determine the lower-CL (LCL) for 100% efficacy is to reframe FECR as a binomial proportion, i.e. define: n and x as the total number of eggs counted (rather than eggs per gram of faeces) for all pre-treatment and post-treatment animals, respectively; p the proportion of resistant eggs is p = x/n and percent efficacy is 100*(1-p) (assuming equal treatment group sizes and detection levels, pre- and post-treatment). The LCL is approximated from the cumulative inverse beta distribution by: 95%LCL = 100*(1-(BETAINV(0.975,x + 1,n-x + 1))). This method is simpler than the current method, independent of the number of animals tested, and demonstrates that for 100% efficacy at least 37 eggs (not eggs per gram) need to be counted pre-treatment before the LCL can exceed 90%. When nematode aggregation is high, this method can be usefully applied to efficacy estimates lower than 100%, and in this case the 95% upper-CL (UCL) can be estimated by:

95%UCL = 100*(1-(BETAINV(0.025,x + 1,n-x + 1))), with the LCL approximated as described above. A simulation study to estimate the precision and accuracy of this method found that the more conservative 99%CL was optimum; in this case 0.975 and 0.025 are replaced by 0.995 and 0.005 to estimate the LCL and UCL, respectively.

Item Type: Journal Article
Murdoch Affiliation(s): School of Veterinary and Biomedical Sciences
Publisher: Elsevier BV
Copyright: 2011 Elsevier B.V.
Item Control Page Item Control Page


Downloads per month over past year