Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Steady expression of high oleic acid in peanut bred by marker-assisted backcrossing for fatty acid desaturase mutant alleles and its effect on seed germination along with other seedling traits

Prasad, M., Bera, S.K., Kamdar, J.H., Kasundra, S.V., Patel, S.V., Jasani, M.D., Maurya, A.K., Dash, P., Chandrashekar, A.B., Rani, K., Manivannan, N., Janila, P., Pandey, M.K., Vasanthi, R.P., Dobariya, K.L., Radhakrishnan, T. and Varshney, R.K.ORCID: 0000-0002-4562-9131 (2019) Steady expression of high oleic acid in peanut bred by marker-assisted backcrossing for fatty acid desaturase mutant alleles and its effect on seed germination along with other seedling traits. PLoS ONE, 14 (12). Art. e0226252.

[img]
Preview
PDF - Published Version
Download (2MB) | Preview
Free to read: https://doi.org/10.1371/journal.pone.0226252
*No subscription required

Abstract

Peanut (Arachis hypogaea L.) is an important nutrient-rich food legume and valued for its good quality cooking oil. The fatty acid content is the major determinant of the quality of the edible oil. The oils containing higher monounsaturated fatty acid are preferred for improved shelf life and potential health benefits. Therefore, a high oleic/linoleic fatty acid ratio is the target trait in an advanced breeding program. The two mutant alleles, ahFAD2A (on linkage group a09) and ahFAD2B (on linkage group b09) control fatty acid composition for higher oleic/linoleic ratio in peanut. In the present study, marker-assisted backcrossing was employed for the introgression of two FAD2 mutant alleles from SunOleic95R into the chromosome of ICGV06100, a high oil content peanut breeding line. In the marker-assisted backcrossing-introgression lines, a 97% increase in oleic acid, and a 92% reduction in linoleic acid content was observed in comparison to the recurrent parent. Besides, the oleic/linoleic ratio was increased to 25 with respect to the recurrent parent, which was only 1.2. The most significant outcome was the stable expression of oil-content, oleic acid, linoleic acid, and palmitic acid in the marker-assisted backcrossing-introgression lines over the locations. No significant difference was observed between high oleic and normal oleic in peanuts for seedling traits except germination percentage. In addition, marker-assisted backcrossing-introgression lines exhibited higher yield and resistance to foliar fungal diseases, i.e., late leaf spot and rust.

Item Type: Journal Article
Publisher: Public Library of Science
Copyright: © 2019 The Authors.
URI: http://researchrepository.murdoch.edu.au/id/eprint/60287
Item Control Page Item Control Page

Downloads

Downloads per month over past year