Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Multilocus sequence typing as a tool for studying the molecular epidemiology and population structure of Brachyspira hyodysenteriae

La, T., Phillips, N.D., Harland, B.l., Wanchanthuek, P., Bellgard, M.I. and Hampson, D.J.ORCID: 0000-0002-7729-0427 (2009) Multilocus sequence typing as a tool for studying the molecular epidemiology and population structure of Brachyspira hyodysenteriae. Veterinary Microbiology, 138 (3-4). pp. 330-338.

PDF - Authors' Version
Download (340kB)
Link to Published Version:
*Subscription may be required


The purpose of this study was to develop and apply a multilocus sequence typing (MLST) scheme to study the molecular epidemiology of Brachyspira hyodysenteriae, the aetiological agent of swine dysentery. Sequences of seven conserved genomic loci were examined in 111 B. hyodysenteriae strains. Fifty-eight of these previously had been analysed by multilocus enzyme electrophoresis (MLEE), and for some the results of pulsed field gel electrophoresis (PFGE), restriction endonuclease analysis (REA) and/or serotyping also were available. The discriminatory power of these methods was compared. The strains were divided into 67 sequence types (STs) and 46 amino acid types (AATs) by MLST. The Index of Association value was significantly different from zero, indication that the population was clonal. Eleven clonal complexes (Cc) comprising between 2 and 10 STs were recognised. A population snapshot based on AATs placed 77.5% of the isolates from 30 of the AATs into one major cluster. The founder type AAT9 included 13 strains from nine STs that were isolated in Australia, Sweden, Germany and Belgium, including one from a mallard. The MLST results were generally comparable to those produced by MLEE. The MLST system had a similar discriminatory power to PFGE, but was more discriminatory than REA, MLEE or serotyping. MLST data provided evidence for likely transmission of strains between farms, but also for the occurrence of temporal "micro-evolution" of strains on individual farms. Overall, the MLST system proved to be a useful new tool for investigating the molecular epidemiology and diversity of B. hyodysenteriae.

Item Type: Journal Article
Murdoch Affiliation(s): Animal Research Institute
Centre for Comparative Genomics
School of Veterinary and Biomedical Sciences
Publisher: Elsevier BV
Copyright: © 2009 Elsevier B.V.
Item Control Page Item Control Page


Downloads per month over past year