Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Editorial: New insights into salinity sensing, signaling and adaptation in plants

Wu, H., Hill, C.B.ORCID: 0000-0002-6754-5553, Stefano, G. and Bose, J. (2021) Editorial: New insights into salinity sensing, signaling and adaptation in plants. Frontiers in Plant Science, 11 . Article 604139.

Free to read: https://doi.org/10.3389/fpls.2020.604139
*No subscription required

Abstract

Plants under salt stress require additional energy supply to fuel salt tolerance mechanisms and growth. Bandehagh and Taylor (2020) establish that plants must strike a balance between energy supply and demand to maintain growth and development during salt stress. This review (1) summaries how salt stress affects different physiological and biochemical process altering the abundance of different metabolites that are feeding into regular and alternative respiratory pathways and shunts; (monomeric complex I, dimeric complex III and I + III2 supercomplex) found to be higher in halophyte mitochondria in comparison with glycophyte, implying efficient electron transfer from complex I to complex III in halophyte mitochondria. Further, the stability of ATP synthase (complex V) also found to be higher in halophyte suggesting halophyte mitochondria better equipped to supply additional ATP required to support salt stress response.Synthesis of organic compatible solutes is an important component for plant salt stress tolerance. In this regard, proline plays an important role in protecting plants from under salinity conditions and showed that salt tolerance is associated with changes in lipid metabolic processes. They also discovered the important role of phosphatidylserine (PS) in mediating enzyme activity, and exogenous application of PS alleviated the effects of NaCl tissue toxicity. The results showed that the superior K + retention ability in both mature and elongation zone of rice root is the key trait conferring its differential salinity stress tolerance. They suggested that besides the superior ability to activate root H + -ATPase pump operation, this key trait is also related to the reduced sensitivity of K + efflux channels to reactive oxygen species and the lower upregulation in OsGORK and higher upregulation of OsAKT1.A key trait long recognized to improve salinity tolerance in many plants is the maintenance of a low Na + /K + ratio. Transient expression experiment showed that JcHDZ07 is a nuclear-localized protein.In improving Na + exclusion ability to maintain root ion homeostasis to ensure a relatively 9 low shoot Na + concentration under saline conditions; 2) maintaining a high shoot sugar content under saline conditions which is enabled by protecting photosystems structures, enhancing photosynthetic performance and sucrose synthetase activity, and inhibiting sucrose degradation. Further, authors suggested that targeting the key genes related to the regulatory mechanisms could provide opportunities to breed more salt tolerant sweet sorghum.Overall, we hope this special issue of benefit to plant breeders and land managers by delivering novel information and insights on the salinity stress response, signalling and adaptive mechanisms operating in plants.

Item Type: Journal Article
Murdoch Affiliation(s): Agricultural Sciences
Publisher: Frontiers Media
Copyright: © 2021 Wu, Hill, Stefano and Bose
URI: http://researchrepository.murdoch.edu.au/id/eprint/58807
Item Control Page Item Control Page