Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Estimating outflow facility parameters for the human eye using hypotensive pressure-time data

O'Dea, R., Smith, D.W., Lee, C-JORCID: 0000-0002-9360-0923 and Gardiner, B.S. (2020) Estimating outflow facility parameters for the human eye using hypotensive pressure-time data. PLoS ONE, 15 (8). e0238146.

PDF - Published Version
Download (1MB) | Preview
Free to read:
*No subscription required


We have previously developed a new theory for pressure dependent outflow from the human eye, and tested the model using experimental data at intraocular pressures above normal eye pressures. In this paper, we use our model to analyze a hypotensive pressure-time dataset obtained following application of a Honan balloon. Here we show that the hypotensive pressure-time data can be successfully analyzed using our proposed pressure dependent outflow model. When the most uncertain initial data point is removed from the dataset, then parameter estimates are close to our previous parameter estimates, but clearly parameter estimates are very sensitive to assumptions. We further show that (i) for a measured intraocular pressure-time curve, the estimated model parameter for whole eye surface hydraulic conductivity is primarily a function of the ocular rigidity, and (ii) the estimated model parameter that controls the rate of decrease of outflow with increasing pressure is primarily a function of the convexity of the monotonic pressure-time curve. Reducing parameter uncertainty could be accomplished using new technologies to obtain higher quality datasets, and by gathering additional data to better define model parameter ranges for the normal eye. With additional research, we expect the pressure dependent outflow analysis described herein may find applications in the differential diagnosis, prognosis and monitoring of the glaucomatous eye.

Item Type: Journal Article
Murdoch Affiliation: Chemistry and Physics
Publisher: Public Library of Science
Copyright: © 2020 Smith et al.
Item Control Page Item Control Page


Downloads per month over past year