Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Comprehensive profiling and quantitation of amine group containing metabolites

Boughton, B.A.ORCID: 0000-0001-6342-9814, Callahan, D.L., Silva, C., Bowne, J., Nahid, A., Rupasinghe, T., Tull, D.L., McConville, M.J., Bacic, A. and Roessner, U. (2011) Comprehensive profiling and quantitation of amine group containing metabolites. Analytical Chemistry, 83 (19). pp. 7523-7530.

Link to Published Version: https://doi.org/10.1021/ac201610x
*Subscription may be required

Abstract

Primary and secondary amines, including amino acids, biogenic amines, hormones, neurotransmitters, and plant siderophores, are readily derivatized with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate using easily performed experimental methodology. Complex mixtures of these amine derivatives can be fractionated and quantified using liquid chromatography–electrospray ionization-mass spectrometry (LC–ESI-MS). Upon collision induced dissociation (CID) in a quadrupole collision cell, all derivatized compounds lose the aminoquinoline tag. With the use of untargeted fragmentation scan functions, such as precursor ion scanning, the loss of the aminoquinoline tag (Amq) can be monitored to identify derivatized species; and the use of targeted fragmentation scans, such as multiple reaction monitoring, can be exploited to quantitate amine-containing molecules. Further, with the use of accurate mass, charge state, and retention time, identification of unknown amines is facilitated. The stability of derivatized amines was found to be variable with oxidatively labile derivatives rapidly degrading. With the inclusion of antioxidant and reducing agents, tris(2-carboxyethyl)-phosphine (TCEP) and ascorbic acid, into both extraction solvents and reaction buffers, degradation was significantly decreased, allowing reproducible identification and quantification of amine compounds in large sample sets.

Item Type: Journal Article
Publisher: American Chemical Society
Copyright: © 2011 American Chemical Society
URI: http://researchrepository.murdoch.edu.au/id/eprint/56495
Item Control Page Item Control Page