Reproducibility of neuroplastic responses induced by continuous theta-burst stimulation.

Ann-Maree Vallence1,2, Mitchell R Goldsworthy1, Nicolette A Hodyl1, John G Semmler3, Julia B Pitcher1, Michael C Ridding1

1Robinson Research Institute, University of Adelaide
2School of Psychology and Exercise Science, Murdoch University
3Discipline of Physiology, School of Medical Sciences, University of Adelaide

Introduction: The therapeutic potential of non-invasive brain stimulation (NIBS) is dependent on the development of protocols that induce robust and functionally relevant cortical changes that outlast the period of stimulation. A current limiting factor of NIBS is intra- and inter-subject variability in NIBS-induced neuroplastic responses. At present, there are very little data on intra-subject reliability of continuous theta-burst stimulation (cTBS)-induced neuroplastic responses.

Methods: To investigate the reproducibility of neuroplastic responses induced by cTBS, motor evoked potential (MEP) input-output (IO) curves were obtained before and after cTBS in three separate experimental sessions.

Results: First, significant MEP suppression was observed following cTBS at the upper end of the IO curve (150-180% resting motor threshold; RMT). At 150% RMT, significant MEP suppression and strong relationships between neuroplastic responses were observed across experimental sessions.

Second, a significant linear relationship was evident between cTBS-induced MEP suppression (probed at an intensity that evoked MEPs ~50% of the maximal MEP) and the interval between experimental sessions.

Discussion: The current study provides the first comprehensive investigation of the between session reproducibility of cTBS-induced neuroplastic responses. Results suggest that 150% RMT is the most reliable TMS intensity to probe cTBS-induced neuroplastic responses and provide some evidence to suggest that short intervals between experimental sessions administering NIBS protocols is associated with increased NIBS-induced plasticity responses.