The Effect of Coaching Succession in Australian Rules Football

Lucas Yiquan Lin, University of Western Australia, Crawley, Australia
Anthony Pecotich, University of Western Australia, Crawley, Australia
Kenneth Beng Yap, University of Western Australia, Crawley, Australia

Every organization must deal with managerial succession, yet its effect on organizational performance remains ambiguous. It is commonly presumed that the manager is critical in influencing organizational performance; hence, an organization can reverse its fortunes by changing the manager. Sporting teams were used as the context to test this paradigm, by examining succession of head coaches in the Australian Football League. It also investigated the events surrounding succession and factors that influence both team performance and sports consumption. To date, few studies have examined these relationships. Using secondary data, statistics on win/loss records, personnel changes, and supporter/membership numbers were collected for all 16 teams in 22 seasons. Partial Least Squares path modeling was used to assess both the measurement and structural models. Results showed that coaching succession had no impact on team performance, thus supporting the theory of ritual scapegoating. Past performance was shown to be a key predictor of current team performance, while player turnover had a significant influence on sporting consumption. Managerial implications were also discussed.

INTRODUCTION

The issue of managerial succession remains critical worldwide because it is a phenomenon that all organizations must cope with. It is generally acknowledged that managers are responsible for the organization's performance: an effective manager will improve organization performance while an ineffective manager will lead to an organization performing poorly (e.g., Grusky 1963; Brown 1982). Based on this premise, managers are replaced when the organization is performing poorly. But does management succession necessarily lead to better organization performance? The current study will attempt to address this fundamental question by empirically evaluating the effects of management succession on sporting teams, in particular the Australian Football League (AFL) clubs. The investigation into the effects of succession will include both team performance and sports consumption. The outcome of this study will have implications for personnel and marketing decisions, but ultimately it will attempt to address the vexing issue of whether (or how much) managers matter (Pfeffer & Davis-Blake 1986).

This study will be of value to macromarketing scholars, particularly those interested in the interaction between sports and society. From its earliest sources, macromarketing as a discipline was presented as consisting of two defining elements: ‘aggregations;’ and ‘social welfare’ (e.g. Bartels 1976; Hunt 1976, 1981; Moyer & Hutt 1978); therefore, by implication the two questions that are central to macromarketing inquiry are: (1) what constitutes human welfare and (2) what is the
best system for achieving it? Sport is an appropriate context to undertake such an inquiry because sport participation, along with sport itself, is a social phenomenon that influences human welfare. Yiannakis (1989) urged marketing scholars and practitioners to observe the interaction between sport and the culture of a society, in order to better understand how these social forces shape consumer behavior and management practices in sport.

Sport is a microcosm of society with many complex relationships between all participants, be they team executives, coaches, players, supporters, or spectators. The beliefs, values, and rituals of a society are manifest in sport. Sport may in turn, also be a place where culture is reshaped and reproduced. Indeed, the attitudes or beliefs relating to human capital and management succession can be observed in sport; therefore, a study in this area is an inquiry not only into how participants perceive the importance of a sports manager or coach, but also how the values of a society can shape the management and marketing practices of a sports team.

LITERATURE REVIEW AND CONCEPTUAL DEVELOPMENT

Much attention has been devoted to the concept of effective leadership in popular management books by authors such as Jack Welch and John Maxwell; thus presuming that managers make an important contribution to the performance of the organization. Many studies have been devoted to the examination of the effects of manager succession in numerous contexts, ranging from formal corporations to sporting teams (e.g., Grusky 1960; Eitzen & Yetman 1972; Lieberson & O’Connor 1972; Allen, Panian & Lotz 1979; Brown, 1982; Pecotich, Tshung & Carroll 1998; Audas, Dobson & Goddard 2002; Fink & Brayman 2006; Campbell 2008; Cucculelli & Micucci 2008).

The review of the literature on management succession will be confined to the context of sporting teams because examining its organizational performance may be more straightforward here. Performance in sports is unequivocally measured with win/loss records and league positions (Scully 1992); moreover, the commercial viability of a sporting organization is related to its on-field success (Pinnuck & Potter 2006). In addition to this, results arising from the present study can be more easily generalized because sporting teams that are in the same league tend to be more similar in size, structure, and administration. For this reason, the study of management succession in AFL teams or clubs was a logical choice1.

It should also be noted that in this study, the coach of a sporting team is regarded as its manager or leader2. Indeed, a coach is charged with the task of making best use of resources (players) and creating strategies (e.g. play tactics, player selection) for the benefit and advancement of the team through maximizing wins; therefore, for the purpose of this study, management succession is synonymous with coaching succession.

1 ‘Australian Rules’ football remains the most popular sport among Australians, with the highest attendance and participation rate of any sport in Australia (Australian Bureau of Statistics 2008).

2 Researchers have drawn parallels between a manager in a corporate context and a coach in a sporting context, in that they are both leaders in their respective fields (e.g. Chelladurai & Saleh 1990; Scully 1994).
Coaching Succession

The literature on coaching, leadership effects and other variables on sporting team performance exists (e.g., Grusky 1963; Grusky 1964; Gamson & Scotch 1964; Eitzen & Yetman 1972; Allen, Panian & Lotz 1979; Brown, 1982; Pfeffer & Davis-Blake 1986; Fizel & D’Ittri 1997; Audas, Dobson & Goddard 2002; De Paola & Scoppa 2008); nonetheless, the results of these studies have been mixed and inconclusive at best. Since this matter has not yet been resolved, three competing paradigms persist for each possible outcome of a succession event (Allan, Panian & Lotz 1979):

1) Improvement in team performance (common sense theory)
2) Deterioration in team performance (vicious cycle theory), and
3) No effect on team performance (ritual scapegoating theory).

Improvement in team performance (common sense theory)

The ‘common sense’ theory acknowledges that coaches are a major influence and are responsible for the organization’s performance. Consistent with management theories (e.g. leadership styles and motivation), it is assumed that the unique nature and the significant role of the coach are critical in affecting performance. The role of coaches include: 1) informational role, which includes supervision of subordinates, disseminating information; and 2) decision-making role, which includes gathering of information to make decisions for the best interest of the team (Mintzberg, cited in Kahn 1993).

When an ineffective coach is sacked, it is hoped that a new, more effective coach will be able to improve the performance of the team by avoiding the errors made by his predecessor. Guest (1962) asserted that instead of creating conflict, succession reduced conflict, which in turn increased the organization’s performance. Gamson & Scotch (1964) subsequently referred to this as the ‘common sense one-way causality theory’.

There is empirical support for this paradigm. In studying the effects of coaching succession on baseball, Allen, Panian & Lotz (1979) found that succession within seasons produced a modest improvement in team performance when the effects of past performance were controlled for. Further, Kahn (1993) observed that higher quality coaches (based on salary) have a significant effect on team winning percentage.

Deterioration in team performance (vicious cycle theory)

The ‘vicious cycle’ theory acknowledges that the succession event itself is detrimental to team performance. Grusky (1963) examined the effects of succession in baseball and found negative correlation between rates of succession and effectiveness. He argued that the disruptive process of succession (e.g. change in habits, changes in structure, loss of morale) causes performance to dip further. He also reasoned that the relationship between organizational effectiveness and succession is two-way rather than one-way; hence, the term vicious cycle. Brown (1982) also provided empirical support for this theory: losing teams that replaced their coach improved less than their unsuccessful counterparts who did not replace their coach.
No effect on team performance (ritual scapegoating theory)

In the ‘ritual scapegoating’ theory, it is proposed that somehow coaches do not play an influential role in team performance; rather, it is external forces beyond the control of coaches that determine performance. Lierberson & O’Connor (1972) proposed that the manager’s ability to affect organizational outcomes is restricted by the organization’s internal structure and social milieu, in addition to the manager’s qualities. In the case of baseball, Gamson & Scotch (1964) argued that the major determinant of team performance is playing talent. They reasoned that the fact that the coach is not directly responsible for player recruitment probably diminishes the importance of the coach.

In a game where there is a pool of ex-coaches who go on to replace other non-performing coaches, it may reflect the interchangeability of coaches. Gamson & Scotch (1964, p 70) established that “the variance in skill between those who become field coaches is so small that managerial skill may be considered a constant”. The cyclical nature of sporting team performance may also be wrongly ascribed to coaching succession. Since coaches are normally replaced during the slump period, the new coach may be credited for bringing the team out of that slump when it would have improved anyway, regardless of who the coach is.

There is empirical support for this paradigm. Eitzen & Yetman (1972) compared the team’s performance after succession for a period of five years to the average five-year performance of the team prior to succession. Their results indicated that a change in coach makes no difference to the team’s performance. In addition, Pfeffer & Davis-Blake (1986) found that after controlling for prior performance, succession had no effect on subsequent performance.

Circumstances surrounding succession

The events and circumstances surrounding coaching succession have also been under-researched. To gain a broader understanding of the phenomenon of coaching succession in sporting teams, the scope of investigation will extend to circumstances that may instigate succession (past team performance), as well as personnel changes that often accompany succession (change in players’ average age and player turnover). Understanding circumstances surrounding the succession event may provide further insight in predicting the succession effect (i.e. whether succession brings about an improvement, deterioration or no effect on team performance).

Past team performance

There is little contention that one major cause of succession is poor organizational performance (Allen, Panian & Lotz 1979; Brown 1982). Field managers or coaches are judged ultimately on the team’s win-loss records; therefore the rationale for coaching succession is quite aptly described by Grusky (1960, p 105):

“...by bringing in ‘new blood’ and new ideas, succession can vitalize the organization so as to enable it to adapt more adequately to its ever-changing internal demands and environmental pressures.”

Audas, Dobson & Goddard (2002) looked into the impact of coaching succession in the English football system and found that there was an alarming high
incidence of within-season coaching change. They reasoned that as a result of the team’s poor performance and relegation prospects, team executives often take a gamble with a new coach as a desperate measure to increase performance in the short run. This approach was consistent with Grusky’s (1960) notion that team executives see coaching succession as a way of advancing the organization. It is anticipated that coaching succession is likely to be instigated by poor performance in the preceding year (i.e. year at lag 1 or t-1); therefore, it is posited that:

\[H_1: \text{There exists a negative relationship between past team performance \((t-1) \) and coaching succession.} \]

Players’ average age

When a new coach takes over, it is likely that he will choose to assemble ‘his own’ team. Grusky (1960) submitted that organizations often bring in ‘new blood’ to revitalize the organization to cope with external pressures. In the same way, new coaches who take over a team may choose to revitalize the ageing team and bring in ‘new blood’, often in the form of younger players. Berman, Down & Hill (2002) posited that teams develop tacit knowledge by playing together for some time; consequently, new coaches may plan for the long term and seek to acquire a core of talented players at a young age early into their tenure to keep them playing in the same team for a longer period of time. For these reasons, it is proposed that:

\[H_2: \text{There is a negative relationship between coaching succession and the players’ average age.} \]

Player turnover

In a similar vein, Allen, Panian & Lotz (1979) posited that a new coach who takes over the team will want to impose his own style of play and management, and will often try new players in a bid to improve team performance. The use of new starting players may be due to the new coach’s statement of intent; to symbolically introduce new patterns or policies that are brought about by the explicit and implicit assumptions by the team executives that some ‘progress’ or ‘change’ is forthcoming (Grusky 1960). A positive relationship between coaching succession and the rate of player turnover is therefore anticipated:

\[H_3: \text{There exists a positive relationship between coaching succession and player turnover.} \]

The inclusion of past team performance in this research is to better understand the circumstances that may instigate or trigger a coaching succession. The introduction of a new coach, in turn may trigger other events such as a decrease in players’ average age and an increase in player turnover. It could also be argued that the latter event may be also triggered by past team performance.

Past team performance and player turnover

It is reasonable to suggest that a coach and key players would want to remain with a winning team, while losing teams tend to drop and change players in hope of achieving better results. Winning teams tend not to change players often as long as they continue winning (a team that ‘wins together, stays together’); therefore it is
anticipated that past team performance in the preceding two years (i.e. year at lag 1 and 2) is negatively related to player turnover:

\[H_{4a} \]: There exists a negative relationship between past team performance \((t-1)\) and player turnover.

\[H_{4b} \]: There exists a negative relationship between past team performance \((t-2)\) and player turnover.

So far, the discussion has been aimed at describing the inter-relationships of pre-season events surrounding a coaching succession. Findings from these hypotheses (H1–H4) may help to better predict the succession effect (i.e. whether succession brings about an improvement, deterioration or no effect on team performance) and better understand how coaching succession may influence current (or upcoming) team performance.

Predicting current team performance

Past team performance

Pfeffer & Davis-Blake (1986) found past team performance to have one of the strongest effects on current team performance for basketball in the event of a succession; which is a finding that is consistent with those of Allen, Panian & Lotz (1979). In both studies, it was found that past team performance had a positive association with current team performance. For the purpose of this study, it is hypothesized that past team performance in the preceding two years has a positive influence on current team performance and that the performance for both lag years are also positively correlated; hence:

\[H_{5a} \]: There exists a positive relationship between past team performance \((t-1)\) and current team performance \((t)\).

\[H_{5b} \]: There exists a positive relationship between past team performance \((t-2)\) and current team performance \((t)\).

\[H_{5c} \]: There exists a positive relationship between the second lag of past team performance \((t-2)\) and the first lag of past team performance \((t-1)\).

Player turnover

A number of studies (e.g. Brown 1982; Pfeffer & Davis-Blake 1986) have found that the rate of player turnover has one of the strongest effects on performance in a current season. A high player turnover every season has a disruptive influence on team performance, as players have to get used to one another’s style and it takes time to gel and play well as a unit. Brown (1982) found player turnover to be strongly related to current team success; where the proportion of explained variation increased by seven per cent with the inclusion of this variable. Moreover, findings revealed that the addition of each new player is associated with a decrease of one percentage point in wins in a season. Both Allen, Panian & Lotz (1979) and Pfeffer & Davis-Blake (1986) also found empirical support for the notion that new players are disruptive to team performance; therefore, it is posited that:

\[H_6 \]: There is a negative relationship between player turnover and current team performance \((t)\).
Players’ average age

Many human resource studies (e.g. Schmidt, Outerbridge & Hunter 1986; McDaniel, Hunter & Schmidt 1988) have concluded that job experience is an important factor in predicting performance. In line with this human resource view of employees, it is assumed that players gain more experience with time; therefore a sporting team with seasoned veterans are likely to capitalize on their experience to improve the team’s performance. On this basis, it is hypothesized that:

\[H_7: \text{There exists a positive relationship between players’ average age and current team performance (t).} \]

Coach experience

A human resource view also propounds the notion that experience generates knowledge that helps maintain a sustainable competitive advantage for the organization (Berman, Down & Hill 2002). On this basis, coaching experience has often been cited as one of the primary sources of knowledge for coaching (e.g. Evered & Selman 1989; Gould et al. 1990; Salmela 1996). Porter & Scully (1982) suggested that coaches learn by doing, and that coaches with more years of coaching experience are better able to develop playing talents into team victories, as opposed to an inexperienced coach. It is therefore proposed that:

\[H_8: \text{There is a positive relationship between coach experience and current team performance (t).} \]

Coaching succession

It is evident that the dominant paradigm in management and leadership is that managers matter in an organization’s performance: Bass & Stogdill’s *Handbook of Leadership* lists over 7500 citations on leadership (Kellet 1999). This common sense theory reinforces the expectation that sporting team current performance will improve in the event of coaching succession. It seems reasonable to test this popular notion; therefore, it is posited that:

\[H_9: \text{Coaching succession has a positive effect on current team performance (t).} \]

Personnel decisions that influence current team performance have obvious financial implications. Apart from salary considerations, a sporting team’s revenue stream can also be impacted indirectly by personnel changes through team performance. The next section discusses such an issue: the relationship between current on-field performance of the team and its consumer demand or consumption of sports.

Current team performance and sports consumption

Many studies have identified team performance as a key predictor of sports consumption (e.g. Demmert 1973; Schofield 1983a,b; Pinnuck & Potter 2006; Horowitz 2007). Prevailing industry wisdom suggests that the performance of teams is a major determinant of match attendance (e.g., Horowitz 2007; O’Reilly et. al 2008). O’Reilly et al. (2008) presented the notion that fans or supporters will choose not to spend disposable entertainment dollar on a team that consistently loses. This notion is further substantiated in empirical studies undertaken by O’Reilly & Nadeau
(2006) and Gitter & Rhoads (2008). Pan et al. (1999) found that for every one percent improvement in winning percentage for a team, it would result in about a 0.57% increase in attendance ratio for a home game.

In the context of the AFL clubs, two indicators of financial performance are (receipts from) match attendance and paid memberships (of the club), both of which are related to the on-field performance of the team. In an examination of the relationship between the on-field success of AFL teams and their off-field financial performance, Pinnuck & Potter (2006) found that an improvement in league position by one position leads to a 2.2 per cent increase in match attendance on average. They also observed that paid memberships in an AFL club was positively associated with team performance. For this reason, it is hypothesized that:

\[H_{10} : \text{There is a positive relationship between current team performance } (t) \text{ and AFL sports consumption.} \]

The conceptual model (Figure 1 below) illustrates the key variables and their hypothesized relationships involved in this study. To reiterate the purpose of this study, there are three broad research objectives. The first is to examine the circumstances surrounding coaching succession, in the hopes of better understanding the succession effect. The second is to assess the factors that may influence current team performance, including the incidence of a succession. The third is to investigate the link between current team performance and sports consumption. The following section discusses the methodology chosen for this study.

METHODOLOGY

Examination of the issues at hand requires the collection of historical data, which include official statistics on coaching and team performance records, player personnel turnover rate, team memberships and attendances. Most statistics were made available through the AFL statistical department, while others were collated from databases of other credible sources. In order to minimize measurement error, as recommended by Jacob (1984) and Kiecolt & Nathan (1985), the data were inspected carefully and corrected for differences in definitions and units of measurement.

Measurement

Studies have recognized that the measurement of organizational performance is a complex issue (e.g. Scott 1977; Pecotich & Crockett 1987); hence, as recommended by both Cochran & Wood (1984) and Dalton & Kesner (1985), multiple indicators were used to measure team performance. Studies that have measured a sports team’s performance in a succession context have used the winning percentage of teams (e.g., Allen, Panian & Lotz 1979; Brown 1982; Pfeffer & Davis-Blake 1986; Schmidt & Berri 2001). In an attempt to incorporate multiple indicators of team performance, the following statistics were collected: season winning percentage, league points scored in the regular season, regular season-ending position in the league, and finishing position in the finals (or playoff rounds). Reverse-coding was administered for both the league and final position indicators, for which a lower value indicates better performance. Two performance lags were created for this study to represent past team performance: first lag \((t-1)\) and second lag \((t-2)\) of team performance.
In this study, coaching succession was defined as a change in head coach between seasons. For teams that underwent a succession mid-season, the event was recorded in the following season. The outgoing coach (either mid-season or post-season) was credited for the team’s performance during that season. For the succession variable, a dummy variable was coded. For teams that underwent a succession either mid- or post-season, the succession variable for its following season was coded ‘1’; otherwise, non-succession seasons were coded ‘0’.

In addition, all the coaches were assigned a unique identification number. This identification number was used to tag the season winning percentages that belonged to a particular coach. The winning percentages were then re-casted so that the winning percentage for each season of a predecessor coach’s tenure was identified as the ‘past’ or ‘before’ team performance for the incumbent coach. In addition, the winning percentage for each season of the incumbent coach was identified as the ‘current’ or ‘after’ team performance. To distinguish and track a coach’s ‘before’ winning percentages from a coach’s ‘after’ (or current) winning percentages, another dummy variable was created. For this variable, ‘before’ winning percentages were coded as ‘0’ and ‘after’ winning percentages as ‘1’.

Coach experience was measured with two indicators. The first indicator is the cumulative percentage of games won prior to succession for all coaches who had previously coached in the AFL. Pfeffer & Davis-Blake (1986) asserted that a coach’s past record is a reasonable proxy for ability and experience. This record included the partial and complete seasons coached. The second indicator is the cumulative years (in seasons) of experience an incoming coach had amassed prior to a succession event. Games won and seasons spent while being an incumbent head coach were also added to each coach’s tally.

Season statistics of player turnover and players’ average age were also collected for each team. The variable for player turnover was created by adding the number of players delisted to the number of incoming new players. Players who were on the roster for a particular season but were not on the roster for the preceding season were classified as incoming new players. Conversely, players who were on the roster for a particular season but were not on the roster for the following season were classified as delisted players. This coding method was also adopted by Pfeffer & Davis-Blake (1986).

Consumption for the sport was measured by game attendance and paid club membership. Game attendance was represented by the total attendance for a particular team in a given regular season of 22 games (1987-2008 seasons). Paid club membership was represented by the number of financial members in each club for each of the seasons in question. The measurement indicators discussed above formed the measurement model.
FIGURE 1
CONCEPTUAL MODEL
(Note that H1, H2, H11 refers to the hypotheses numbers, while + or – indicates the hypothesized direction of the relationship)
It should also be noted that a population variable was created as a control variable for game attendance. Schofield (1983b) claimed that in addition to team performance, population is also an important variable in influencing attendance at major sports events. Annual national population statistics for the years ranging 1987 to 2008 were obtained from the Australian Bureau of Statistics. Game attendance was regressed on annual population and the residuals were saved as the transformed attendance data (having controlled for population growth).

DATA ANALYSIS AND RESULTS

The sample comprised 16 AFL teams across a 22-year period, from 1987 to 2008. The number of teams studied was comparable to those of other studies (e.g. Gamson & Scotch 1964; Pfeffer & Davis-Blake 1986). All teams underwent at least one coaching succession within the 22-year period. Succession occurred in 103 instances. The average winning percentage of teams in this period was 50.6%, with the lowest record being 5% and the highest being 96%. The average experience of coaches was 4.1 years. The most experienced coach had 26 years of coaching experience while several had no experience prior to joining the team. The youngest average age recorded for a team’s players was 20 years old and the highest was 26 years old.

Analysis of the measurement model

Partial Least Squares (PLS) path modeling was used to evaluate both the measurement and structural model (Wold 1981; Lohmoeller 1989; Fornell and Cha 1994). The small sample size, as well as the stringent distributional and model formulations required by the global maximization methods precluded the use of a more well-known method such as LISREL. A PLS model is formally specified by two sets of linear relationships: the measurement (outer) model and the structural (inner) model. The measurement model relates to the specified relationships between the latent (e.g. team performance) and manifest (e.g. season winning percentage) variables. The structural model, which is displayed in Figure 1, relates to the hypothesized relationships between the latent variables reported and interpreted as standardized regression coefficients (Wold 1981; Lohmoeller 1989; Kroonenberg 1990; Falk & Miller 1992; Fornell & Cha 1994). A revised version of the PLS program PLS Graph 3.0 (Chin & Fry 2000) was used to systematically assess the properties of both the measurement and structural models.

The results, which are displayed in Table 1 below, demonstrated that the measurement model had satisfactory psychometric properties. All of the indicators used to measure the construct of current team performance had a loading of more than 0.90, which is substantially higher than the recommended 0.40. The composite scale reliability (CR) measure for current team performance (t) was 0.99, while the average variance extracted (AVE) was 0.96, which exceeded the recommended cut-off of 0.50 (Fornell & Larcker 1981). This testing procedure was replicated for the other latent variables that had more than one measurement indicator, namely coaching experience and sports consumption. For both latent variables, all item loadings were greater than 0.70. The CR and AVE for coaching experience were 0.86 and 0.76 respectively; while the CR and AVE for sports consumption were 0.70 and 0.58 respectively.
<table>
<thead>
<tr>
<th>Latent Variable</th>
<th>Measurement Indicator</th>
<th>Variable Name</th>
<th>Model A</th>
<th></th>
<th></th>
<th>Model B</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Loading</td>
<td>t-statistic</td>
<td>CR</td>
<td>AVE</td>
<td>Loading</td>
<td>t-statistic</td>
</tr>
<tr>
<td>Current team performance (t)</td>
<td>Winperc</td>
<td>Winning percentage in year t</td>
<td>0.99</td>
<td>775.53</td>
<td>0.99</td>
<td>0.96</td>
<td>0.99</td>
<td>733.11</td>
</tr>
<tr>
<td></td>
<td>Points</td>
<td>Points</td>
<td>0.97</td>
<td>216.95</td>
<td>0.97</td>
<td>0.96</td>
<td>0.97</td>
<td>194.22</td>
</tr>
<tr>
<td></td>
<td>Positr</td>
<td>Position 1</td>
<td>0.98</td>
<td>732.67</td>
<td>0.98</td>
<td>0.96</td>
<td>0.98</td>
<td>524.91</td>
</tr>
<tr>
<td></td>
<td>Finposr</td>
<td>Final position 1</td>
<td>0.97</td>
<td>393.10</td>
<td>0.97</td>
<td>0.96</td>
<td>0.97</td>
<td>363.81</td>
</tr>
<tr>
<td>Past team performance (t-2)</td>
<td>Winpercl</td>
<td>Winning percentage in year t-2</td>
<td>0.99</td>
<td>961.08</td>
<td>0.99</td>
<td>0.97</td>
<td>0.99</td>
<td>1012.85</td>
</tr>
<tr>
<td></td>
<td>Points12</td>
<td>Points</td>
<td>0.99</td>
<td>904.59</td>
<td>0.99</td>
<td>0.97</td>
<td>0.99</td>
<td>878.93</td>
</tr>
<tr>
<td></td>
<td>Position1</td>
<td>Position 1</td>
<td>0.99</td>
<td>939.21</td>
<td>0.99</td>
<td>0.97</td>
<td>0.99</td>
<td>818.96</td>
</tr>
<tr>
<td></td>
<td>Finaposil</td>
<td>Final position 1</td>
<td>0.97</td>
<td>360.11</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>454.80</td>
</tr>
<tr>
<td>Past team performance (t-1)</td>
<td>Winpercl</td>
<td>Winning percentage in year t-1</td>
<td>0.99</td>
<td>832.00</td>
<td>0.99</td>
<td>0.96</td>
<td>0.99</td>
<td>917.48</td>
</tr>
<tr>
<td></td>
<td>Points1</td>
<td>Points</td>
<td>0.97</td>
<td>178.18</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>195.69</td>
</tr>
<tr>
<td></td>
<td>Position1</td>
<td>Position 1</td>
<td>0.98</td>
<td>689.92</td>
<td>0.98</td>
<td>0.97</td>
<td>0.98</td>
<td>771.96</td>
</tr>
<tr>
<td></td>
<td>Finaposi</td>
<td>Final position 1</td>
<td>0.97</td>
<td>355.68</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>399.91</td>
</tr>
<tr>
<td>Coach succession before after</td>
<td>succeba</td>
<td>Dummy variable indicating before and</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
</tr>
<tr>
<td></td>
<td>Player turnover</td>
<td>Turnover</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
</tr>
<tr>
<td></td>
<td>Player’s average age</td>
<td>Average</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
</tr>
<tr>
<td>Coach experience</td>
<td>Coacexpr</td>
<td>Coach experience</td>
<td>0.72</td>
<td>2.95</td>
<td>0.86</td>
<td>0.76</td>
<td>0.72</td>
<td>2.95</td>
</tr>
<tr>
<td></td>
<td>Incowir</td>
<td>Incoming coach win record</td>
<td>1.00</td>
<td>4.33</td>
<td>1.00</td>
<td>4.33</td>
<td>1.00</td>
<td>4.33</td>
</tr>
<tr>
<td>Sports consumption</td>
<td>Attenres</td>
<td>Attendance controlled for population</td>
<td>0.99</td>
<td>52.95</td>
<td>0.70</td>
<td>0.58</td>
<td>0.56</td>
<td>6.15</td>
</tr>
<tr>
<td></td>
<td>Clubmemb</td>
<td>Club memberships</td>
<td>0.43</td>
<td>3.21</td>
<td>0.95</td>
<td>43.10</td>
<td>0.95</td>
<td>43.10</td>
</tr>
</tbody>
</table>

1 Variable is reverse-coded
2 Bootstrapping estimates calculation based on Chin (1998a, b)
3 Composite Reliability
4 Average Variance Extracted
Analysis of the structural model

There were two structural models estimated using PLS path modeling: Model A, which is the conceptual model shown in Figure 1; and Model B, which is a trimmed version of Model A (refer to Figure 3). The absolute value of the product of the path coefficient and the appropriate correlation coefficient are reasonable criteria for assessing the significance of the individual paths (Falk & Miller 1992). In addition, the standard errors of the estimate were obtained by using the non-parametric bootstrapping procedure as described by Chin (1998) and Tenenhaus et al. (2005). One hundred replications were specified for the bootstrapping procedure. The results pertaining to the structural model are presented in Table 2 below.

Circumstances surrounding succession

Results suggested that past team performance effect on coaching succession was not significant; thus Hypothesis 1 was rejected. Hypothesis 2 was also not supported as the path coefficient between coaching succession and players’ average age was positive, and not negative as hypothesized. The relationship between coaching succession and player turnover was found to be negative, which was opposite to the hypothesized direction. Consequently, Hypothesis 3 was not supported. Hypothesis 4a was supported as results revealed a negative association between past team performance \((t-1) \) and player turnover. Nonetheless, Hypothesis 4b was not supported because the analysis did not reveal a significant relationship between past team performance \((t-2) \) and player turnover.

Predicting current team performance

Results indicated that that past team performance \((t-1) \) was positively associated with current team performance \((t) \) (path coefficient = 0.44, t-statistic = 9.95); therefore, Hypothesis 5a was supported. The path coefficient for the relationship between current team performance \((t) \) and the second lag of team performance \((t-2) \) was positive but not significant; thus, Hypotheses 5b was rejected. Hypothesis 5c was supported as results indicated that the second lag of team performance was a significant predictor of the first lag of team performance (path coefficient = 0.47, t-statistic = 12.31). Hypothesis 6 was not supported because the path coefficient for the relationship between player turnover and current team performance was not insignificant. As the path coefficient between players’ average age and current team performance was also insignificant, Hypothesis 7 was rejected. Likewise, empirical support was not found for the relationship between coach experience and current team performance; therefore, Hypothesis 8 was also rejected. Finally, results indicated that coaching succession had no relationship with current team performance as the path coefficient was not significant (path coefficient = 0.03, t-statistic = 0.86). Consequently, Hypothesis 9 was rejected. In predicting current team performance in Model A, the \(R^2 \) was 0.23.

Current team performance and sports consumption

A significant path coefficient of 0.33 between current team performance and sports consumption gave empirical support for the positive association; Hypothesis 10 was therefore supported. The \(R^2 \) for this relationship was 0.11. It should also be noted that the average variance accounted (AVA) for all specified relationships in Model A was 0.10. A graphical representation of the PLS results for Model A is displayed in Figure 2 below.
Table 2: Analysis of the Structural Model

<table>
<thead>
<tr>
<th>Predictor Variable (t-1)</th>
<th>Predicted Variable</th>
<th>Hypothesis</th>
<th>Path</th>
<th>t-statistic*</th>
<th>R²</th>
<th>Hypothesis testing</th>
<th>Path</th>
<th>t-statistic*</th>
<th>R²</th>
<th>Hypothesis testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Past team performance</td>
<td>Coach succession</td>
<td>H1: -</td>
<td>-0.02</td>
<td>0.54</td>
<td>0.00</td>
<td>Rejected</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coaching succession</td>
<td>Player average age</td>
<td>H2: -</td>
<td>0.09</td>
<td>1.98"**</td>
<td>0.01</td>
<td>Rejected</td>
<td>0.09</td>
<td>1.91</td>
<td>0.01</td>
<td>Rejected</td>
</tr>
<tr>
<td>Coaching succession</td>
<td>Player turnover</td>
<td>H3: +</td>
<td>-0.15</td>
<td>3.10"**</td>
<td>0.03</td>
<td>Supported</td>
<td>0.47</td>
<td>15.15"**</td>
<td>0.22</td>
<td>Supported</td>
</tr>
<tr>
<td>Past team performance</td>
<td>Player turnover</td>
<td>H4a: -</td>
<td>-0.10</td>
<td>1.99"**</td>
<td>0.03</td>
<td>Supported</td>
<td>0.47</td>
<td>13.23"**</td>
<td>0.02</td>
<td>Supported</td>
</tr>
<tr>
<td>Past team performance</td>
<td>Current team performance</td>
<td>H5a: +</td>
<td>0.44</td>
<td>9.95"**</td>
<td>0.23</td>
<td>Supported</td>
<td>0.47</td>
<td>13.23"**</td>
<td>0.02</td>
<td>Supported</td>
</tr>
<tr>
<td>Past team performance</td>
<td>Current team performance</td>
<td>H5b: +</td>
<td>0.04</td>
<td>0.87</td>
<td>-</td>
<td>Rejected</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Past team performance</td>
<td>Past team performance</td>
<td>H5c: +</td>
<td>0.47</td>
<td>12.31"**</td>
<td>0.22</td>
<td>Supported</td>
<td>0.47</td>
<td>13.23"**</td>
<td>0.02</td>
<td>Supported</td>
</tr>
<tr>
<td>Player turnover</td>
<td>Current team performance</td>
<td>H6: -</td>
<td>-0.06</td>
<td>0.95</td>
<td>-</td>
<td>Rejected</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Players’ average age</td>
<td>Current team performance</td>
<td>H7: +</td>
<td>-0.04</td>
<td>0.66</td>
<td>-</td>
<td>Rejected</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coach experience</td>
<td>Current team performance</td>
<td>H8: +</td>
<td>0.07</td>
<td>1.05</td>
<td>-</td>
<td>Rejected</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coaching succession</td>
<td>Current team performance</td>
<td>H9: +</td>
<td>0.03</td>
<td>0.86</td>
<td>-</td>
<td>Rejected</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Current team performance</td>
<td>Sports consumption</td>
<td>H10: +</td>
<td>0.33</td>
<td>7.79"**</td>
<td>0.11</td>
<td>Supported</td>
<td>0.06</td>
<td>1.06</td>
<td>0.38</td>
<td>Rejected</td>
</tr>
<tr>
<td>Players’ average age</td>
<td>Player turnover</td>
<td>UH1: -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-76</td>
<td>33.36"**</td>
<td>0.60</td>
<td>-</td>
</tr>
<tr>
<td>Player turnover</td>
<td>Sports consumption</td>
<td>UH2: -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-56</td>
<td>18.00"**</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Past team performance</td>
<td>Sports consumption</td>
<td>UH3: +</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.12</td>
<td>2.72"**</td>
<td>0.38</td>
<td>-</td>
</tr>
<tr>
<td>Coach experience</td>
<td>Sports consumption</td>
<td>UH4: +</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.12</td>
<td>2.92"**</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Average Variance Accounted for (AVA)</td>
<td></td>
<td></td>
<td>0.10</td>
<td>0.10</td>
<td>0.33</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Bootstrapping estimates calculation based on Chin (1998a, b); ** indicates that bootstrap t-statistic is significant at α = 0.05
FIGURE 2
GRAPHICAL REPRESENTATION OF ANALYSIS OF STRUCTURAL MODEL A
(Note that ** indicates that bootstrap t-statistics for path coefficient is significant at \(\alpha = 0.01 \), * indicates significance at \(\alpha = 0.05 \))

[Diagram showing causal relationships between variables with coefficients and R^2 values.]
Unspecified effects from Model A

The results also pointed to a few unspecified effects relating to sports consumption, as well as players’ average age. The correlations of latent variables displayed in Table 3 below suggested that player turnover was negatively associated with sports consumption. In addition, player turnover was also negatively associated with players’ average age. Moreover, past team performance \((t-1)\) had a positive association with sports consumption. Finally, the correlations suggested that coach experience was positively related to sports consumption. These unspecified effects were incorporated in model B, which is examined in the following section.

TABLE 3

<table>
<thead>
<tr>
<th></th>
<th>Coaching succession</th>
<th>Player turnover</th>
<th>Current team performance ((t))</th>
<th>Past performance ((t-2))</th>
<th>Past performance ((t-1))</th>
<th>Players’ average age</th>
<th>Sports consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coaching turnover</td>
<td>1.00</td>
<td>-0.14</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current team performance ((t))</td>
<td>0.02</td>
<td>-0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Past performance ((t-2))</td>
<td>-0.04</td>
<td>-0.07</td>
<td>0.25</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Past performance ((t-1))</td>
<td>-0.24</td>
<td>-0.11</td>
<td>0.47</td>
<td>0.47</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Players’ average age</td>
<td>0.09</td>
<td>-0.77</td>
<td>0.07</td>
<td>0.17</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Sports consumption</td>
<td>-0.09</td>
<td>-0.22</td>
<td>0.32</td>
<td>0.15</td>
<td>0.27</td>
<td>0.18</td>
<td>1.00</td>
</tr>
<tr>
<td>Coach experience</td>
<td>-0.10</td>
<td>0.08</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
<td>-0.08</td>
<td>0.261</td>
</tr>
</tbody>
</table>

Analysis of Model B

To further evaluate the theoretical model, the non-significant paths were trimmed, and the correlations between the latent variables (shown in Table 3) were specified in the new model, Model B. In assessing the measurement model for Model B, the item loadings were virtually identical to those for Model A (see Table 1). All item loadings were above the recommended cutoff of 0.40, as were the values for both CR and AVE. Overall, the psychometric properties of the measurement model for Model B remained satisfactory.

Having trimmed insignificant paths from Model A, Hypotheses 1, 4, 5b, and 6 through 9 were not tested in Model B. It should be noted that Hypothesis 4a relating to the relationship between past team performance \((t-1)\) and player turnover was dropped from Model B because it was only marginally significant in Model A. This relationship became insignificant when it was included initially in Model B, largely due to the new specified path between players’ average age and player turnover. In
addition to the relationship between players’ average age and player turnover (Unspecified Hypothesis 1 or UH1), paths were also specified to represent the following relationships: player turnover and sports consumption (UH2), past team performance \((t-1)\) and sports consumption (UH3), as well as coach experience and sports consumption (UH4). The trimmed structural model of Model B was also assessed using PLS path modeling. The results of the analysis are reported in Table 2 above, while the graphical representation of these results is displayed in Figure 3 below.

Hypothesis 2 was not supported because the path coefficient between coaching succession and players’ average age was insignificant. Similar to findings from Model A, the relationship between coaching succession and player turnover was found to be negative and not positive as hypothesized; therefore, Hypothesis 3 was rejected. Hypothesis 5a was once again supported, with results indicating that past team performance \((t-1)\) has a positive association with current team performance \((t)\). A positive relationship between both lags of past team performance \((t-1)\) and \((t-1)\) was confirmed; thus supporting Hypothesis 5c. Surprisingly, unlike Model A, the analysis of Model B revealed that the relationship between current team performance and sports consumption was no longer significant; consequently, Hypothesis 10 was rejected. This was largely due to the inclusion of player turnover as a new predictor variable for sports consumption.

The unhypothesized effects (UH1 through UH4) from Model A were also tested in Model B. The results showed that there was a negative relationship between players’ average age and player turnover (UH1), where the path coefficient was -0.76. In addition, player turnover was found to have a negative association (path coefficient = -0.56) with sports consumption (UH2). Support was also found for the positive relationship (path coefficient = 0.12) between past team performance \((t-1)\) and sports consumption (UH3). Finally, coach experience was found to be positively related to sports consumption (UH4), where the path coefficient was 0.12. These results are graphically represented in Figure 3 below.

The results of Model B revealed an interesting correlation: there was a positive association between players’ average age and sports consumption. The correlation coefficient between the two latent variables was 0.45. This finding has unexpected but interesting implications, which will be discussed later.

There were significant changes in the \(R^2\) for both player turnover and sports consumption. In particular, the \(R^2\) for player turnover increased from 0.03 to 0.60 (with the inclusion of a specified path with players’ average age), while the \(R^2\) for sports consumption increased from 0.11 to 0.38 (with the inclusion of a specified path with player turnover). Moreover, the averaged variance accounted (AVA) for increased to 0.33, a substantial improvement from Model A. The improved AVA, coupled with the substantial increase in \(R^2\) for certain endogenous variables were indicative of Model B’s improved predictive relationship vis-à-vis Model A. Evidently, the data provided stronger support for the more parsimonious model. The findings of the trimmed model (shown in Figure 3) are both interesting and important; it should therefore serve as a useful platform for further research in the field.
FIGURE 3
GRAPHICAL REPRESENTATION OF ANALYSIS OF STRUCTURAL MODEL B
(Note that ** indicates that bootstrap t-statistics for path coefficient is significant at \(\alpha = 0.01 \))

```
Coaching Succession

Players' Average Age

\[ R^2 = 0.01 \]

\[ 0.09 \]

\[ -0.08^{**} \]

\[ 0.76^{**} \]

Player Turnover

Coach Experience

\[ R^2 = 0.60 \]

Past Team Performance (Lag 2)

\[ 0.47^{**} \]

Past Team Performance (Lag 1)

\[ R^2 = 0.02 \]

\[ -0.56^{**} \]

\[ 0.12^{**} \]

Current Team Performance

\[ R^2 = 0.22 \]

\[ 0.06 \]

Sports Consumption

\[ R^2 = 0.38 \]
```
DISCUSSION

The main objective of this research was to look into the effect of coaching succession in the AFL context, as well as the events surrounding it. In the process, this contributes to the development of conceptual and empirical issues surrounding the succession–performance relationship. In addition, this study also sought to explore the demand for the team’s offering by examining its relationship with current team performance.

Past team performance and coaching succession

It is surprising that there was no association between past team performance and coaching succession; nonetheless, there is a plausible explanation. Unlike Audas, Dobson & Goddard’s (2002) study which looked at English soccer, the AFL does not have a relegation system in place. This could explain to some extent why AFL teams are not as pressured into quickly dismissing coaches. In English soccer, a relegation to a second or lower-tier competition would mean substantial loss in prize money and revenue; thus, creating a high-pressure environment for the coach to deliver results to keep the team in the top-tier competition. This issue may be less urgent in the AFL.

Coaching succession and players’ average age

There appears to be no relationship between coaching succession and the players’ average age. This finding was unexpected as it was anticipated that succession would result in the incoming coach clearing out ‘legacy’ or older players from the previous regime. This would imply that coaches in the AFL tend not to take such drastic measures to improve performance but rather, they look to utilize the existing playing talent at their disposal. In addition, it could also point to the fact that coaches may be somewhat limited in how much they can influence player recruitment decisions.

Coaching succession and player turnover

The relationship between coaching succession and player turnover was negative, being opposite to the expected direction. This contradicts findings by Allen, Panian & Lotz (1979) as it appears that player turnover goes down when the incidence of succession increases. This is puzzling given that it is generally assumed that new coaches would drop players from the old regime to assemble his new team. One possible explanation is there could be a settling-in period where the new coach would need time to assess the players at his disposal before making personnel changes. Alternatively, it could point to the fact that the coach may have limited influence with regards to acquiring new players. The coach may therefore be constrained to work with the playing talent that he inherits.

Past team performance and player turnover

There was no empirical evidence to support the inclusion of the relationship between past team performance (t-1) and player turnover. This finding is consistent with that of Allen, Panian & Lotz (1979) and Pfeffer & Davis Blake (1986). One conceivable explanation could stem from the coach being patient with his players’ performances. This seems reasonable given that the coach naturally places his faith in the team that he has assembled. Another plausible explanation is that coaches are limited in their ability to acquire new players between seasons.
Past team performance and current team performance

The relationship found between past team performance \((t-1)\) and current team performance \((t)\) was positive; thus, replicating the findings of Allen, Panian & Lotz (1979), Pfeffer & Davis-Blake (1986) and Pecotich, Tshung & Carroll (1998). However, it should be noted that the influence of past performance on current team performance appears to be restricted to one season only. This has significant implications for sporting teams. With past success having a ripple effect on future performance, it could suggest that the team enters a new season with a momentum of winning or losing from the previous season. Underlying this phenomenon could be a myriad of ‘sticky’ factors that influence performance, such as team chemistry and group cohesion. Executives and coaches need to take heed of this and recognize the importance of assembling a core group of players that can play together for a substantial amount of time. Pecotich and colleagues (1998, p 206) proposed that “organizational inertia and perhaps external forces may be more powerful than short-term management changes.”

Player turnover and current team performance

The hypothesized negative relationship between player turnover and current team performance was not supported. Contrary to the proposition put forth by Brown (1982), the findings of this study suggested that the rate of change in the player roster between seasons does not affect team performance in any way; however, caution should be taken as this study examined player turnover between seasons, and not changes in the starting lineup between games mid-season. In some cases, post-season player turnover could be high, but it would not necessarily affect team performance as the coach may still use the same core group of starting players during the season.

Players’ average age and current team performance

Findings suggested that the average age of players has no bearing on team performance. Traditionally, when it came to team selection, the coach could either: 1) adopt a youth policy; 2) adopt a policy of building his team around experienced players; or 3) adopt a mix of both youth and experienced players. It seems that the age of the team is not a major issue from the results, but ultimately it is the quality of players that matters.

Players’ average age and player turnover

The relationship between players’ average age and player turnover was negative; thus suggesting that coaches tend to value experience over youth and thereby place key emphasis on experience in the team. It may be that AFL coaches view experienced players as an important ingredient for team success. In addition, it could be surmised that experienced players are well-known and considered marquee players, thus explaining why coaches may be hesitant to alter an experienced team drastically.

It should be noted that players’ average age had no influence on current team performance. Despite this finding, the preference of head coaches or team executives to retain experienced players may be due to two reasons. Firstly, experienced players may be retained because they tend to draw supporters. Schofield (1983a) looked into the demand for cricket and found veteran players can attract on average a few hundred additional spectators. Alternatively, a core group of experienced players may be
retained to provide mentorship to younger and less-seasoned players who are introduced to the roster over the years.

Coach experience and current team performance

There was no empirical support for the relationship between coach experience and current team performance. This finding is contrary to the research by Pfeffer & Davis-Blake (1986), who made the case for the effects of mediating variables such as a coach’s experience. As coaches manage more games over time, their winning percentage tends to converge, thus resulting in less outward distinction between a ‘good’ coach and a ‘bad’ coach. Moreover, the persona or style of the coach may influence levels of support from fans and team executives, while obscuring their true coaching record or their contribution at the margin. Future research could look into other characteristics of coaches in examining the relationship between personal attributes and resulting team performance.

Coaching succession and current team performance

Arguably the most important finding of this research is that coaching succession has no effect on current team performance. This may garner doubts amongst researchers and advocates of leadership, but it is important to recognize this research does not contend that there is not a ‘better’ or ‘worse’ coach; it submits that the role of the coach is not significant or important enough to drastically affect team performance. Their ability to influence results might also be hindered or constrained by external environmental factors such as availability of key players and the effectiveness of the scouting department. This line of argument is consistent with the ‘contextualist’ view that the coach is constrained in his ability to affect team performances by situational factors (Thomas 1988); therefore, it would be unfair to expect a coach to single-handedly revive the fortunes of a team without considering other extraneous factors.

It should also be noted that coaches who stay in the game for longer periods have very similar winning records. This suggests that their contribution to maximizing a team’s winning percentage may indeed be limited; therefore, team executives may have to look at other areas for change or improvement before looking to replace the coach. It is not uncommon for executives to recruit from the same pool of coaches and expect better on-field performance, failing which they go through the cycle of succession. The failure to identify other avenues to improve performance may provide more credence that the cycle of coaching succession is just a ritual of scapegoating.

Current team performance and sports consumption

In the presence of player turnover, there was no relationship between current team performance and sports consumption, which is in contrast to the findings of Horowitz (2007) and Pinnuck & Potter (2007). This finding points to the possibility that supporters value and appreciate a certain level of familiarity with the team, or that certain segments of supporters support the team primarily because of its players, in spite of how successful the team is on the field.

Player turnover and sports consumption

A negative relationship was found between player turnover and sports consumption, which implies that AFL supporters do not enjoy seeing high player
turnover every season. Supporters may value familiarity with the team and wish for their favorite players to remain at the team. This explanation is consistent with Schofield’s (1983a) finding of a positive association between particular players and cricket attendance. As athletes receive more of the celebrity spotlight, the allegiance of supporters may shift from the team to individual players. This could also be due in part to the successful promotion and commercialization of AFL players. Team executives and coaches should therefore exercise thoughtfulness and caution when it comes to player recruitment; moreover, changes to the roster should not so drastic that supporters can no longer relate to the team.

Coach experience and sports consumption
A positive relationship was found between coach experience and sports consumption, which implies that apart from players, coaches can also command the following of supporters. This phenomenon could be due to a number of reasons. The supporters could follow certain coaches with a ‘winning reputation’ with the belief that he is able to translate that winning reputation into team results. In addition, it could be the style of play implemented (whether perceived or real) by the coach that attracts supporters to the team. This implies that even a team’s supporters may hold the human resource view (common sense theory) that coaching experience matters and that a coach can influence the current performance of their team. If this is indeed the case, then perhaps coaching succession will be perceived by supporters as an acceptable or even an anticipated strategy for team executives to turn the team around.

Players’ average age and sports consumption
An unanticipated discovery in this study was the positive correlation between players’ average age and sports consumption. Team executives may have to leverage the popularity of veteran marquee players to enhance the marketability of the team. Little is known about the relationship between players’ average age and sports consumption; nonetheless, the rationale may be similar to the supporters’ following of an experienced coach. Veteran players may have cultivated a loyal following with the team over the years and perhaps the supporters follow particular players with the belief that they can lend playing experience to improve overall team performance.

Past performance and sports consumption
Past performance was found to be positively related to sports consumption, which is consistent with Borland & Lye’s (1992) argument that habit is a determinant of demand, where people attend matches through habit. Supporters attend matches or renew memberships based on past team performance (t-1), even if the team does not perform well during the current season. It points to a particular ‘stickiness’ or loyalty in the support of sports teams; therefore, there are opportunities for teams to secure supporters’ support through successful team performances even if the rewards are not reaped in the same season.

LIMITATIONS AND FUTURE RESEARCH
One limitation of the study was that in recording the succession event, the cause of it was not known (i.e. the actual circumstances in which succession occurred). The coach could have resigned voluntarily, retired, gone on to coach another team on his own accord, or been sacked. Access to this information was not available; consequently, it limited the depth of investigation of the relationship between past team performance and coaching succession. Future studies can address
this shortcoming and in the process, shed more light on the circumstances surrounding succession, in the hopes of better predicting the succession effect.

Another limitation of the study was in the recording of player turnover. Information pertaining to starting players for individual matches was not available for all the seasons. As a result, any inference based on player turnover is limited to the playing roster in general, and not the starting lineup. Future research in the area could investigate changes in weekly starting lineups to assess the true impact of roster changes on current team performance and sports consumption.

Finally, apart from coaching experience, the present study did not account for individual-level factors that may influence coaching performance. Scholars in the area (e.g. Pfeffer & Davis-Blake 1986; Friedman & Singh 1989) have called for future studies to incorporate individual-level factors such as the functional or technical background and leadership styles, so as to better understand the antecedents and outcomes of succession.

CONCLUSIONS

Management succession is a critical issue that all organizations have to deal with, but it appears that some succession events are motivated by unrealistic expectations of the manager. Despite limitations of the present study, it has presented empirical support for the ritual scapegoating theory. Executives should recognize that the coach may be limited with regard to how much he can influence team performance and that he may be constrained by external forces such as the team structure and availability of quality players. Rather than unrealistically expecting the coach to single-handedly revive a team’s fortune, team executives should also ensure that a proper structure is in place to deliver results. This involves investing in training facilities, investing in the scouting network department, and bringing quality players into the team. Finally, team executives should realize that excessive turnover at both the coach and player levels can be detrimental to its supporter base.
REFERENCES

Bartels, R 1976, The history of marketing thought, 2nd ed, Grid, Inc., Columbus, Ohio.

Chin, WW & Fry, TA 2000, PLS-Graph 3.0 build 176, Department of Decision And Information Science, University of Houston, Houston, TX.

Demmert, HG 1973, *The economics of professional team sports*, Heath DC, Lexington, MA.

Fornell, C & Larcker, DF 1981, ‘Evaluating structural equation models with unobservable variables and measurement error’, *Journal of Marketing Research*, vol. 18, no. 1, pp. 39–50.

Schofield, JA 1983b, ‘Performance and attendance at professional team sports’, *Journal of Sport Behavior*, vol. 6, no. 4, pp. 197–206.

