The role of overconfidence on problem gambling
Overview

- Gambling in the judgement and decision making literature
- Decision from description vs. Decision from experience
- Illusion of expertise and overconfidence in gambling
- A study of illusion of expertise and overconfidence
Gambling choices in decision making research

“Overweighting of low probabilities may contribute to the attractiveness of both insurance and gambling.” (Tversky & Kahneman, 1979)
Gambling choices in decision making research

Choose between:
- A: winning $5,000 with probability .001, 72%
- B: winning $5 with certainty, 28%

Tversky & Kahneman (1979)
Gambling choices in decision making research

- Choose between:
 - A: losing $5,000 with probability .001, 17%
 - B: losing $5 with certainty 83%

Tversky & Kahneman (1979)
Gambling choices in decision making research

- **Expected Value (Pascal, Fermat, XVII century)**

 \[\text{EV} = \sum p_i x_i \]

 - \(p \) is probability
 - \(x \) is money
 - \(i \) is each possible outcome of that option

- **Expected Utility (Bernoulli, 1738; von Neumann & Morgenstern, 1947)**

 \[\text{EU} = \sum p_i u(x_i) \]

 - \(p \) is probability
 - \(x \) is money
 - \(i \) is each possible outcome of that option
 - \(u(x_i) \) is a positive but decelerating function of the monetary amount \(x_i \).

- **Prospect Theory (Tversky & Kahneman, 1979)**

 \[V(x, p; y, q) = \pi(p) u(x) + \pi(q) u(y) \]

 - \(V \) is value of a prospect
 - \(x \) is money in option 1
 - \(p \) is probability for option 1
 - \(y \) is money in option 2
 - \(q \) is probability for option 2
 - \(\pi \) is a weighting function given to each probability
 - \(u \) is a value function given to each amount of money

The role of overconfidence in problem gambling | Campitelli & Speelman
Decisions by description vs. Decisions by experience

Hertwig & Erev (2009)

The role of overconfidence in problem gambling | Campitelli & Speelman
Decisions by description vs. Decisions by experience

- Decisions by experience (Hertwig et al., 2004)
 - When people are allowed to play draws, the biases found by Tversky & Kahneman diminish
Problem gambling

- Why extended exposure to outcomes in gambles do not diminish harmful gambling behaviour?
 - Hypothesis: Problem gamblers develop an illusion of expertise that maintains their overconfidence
Illusion of expertise:

- The tendency to prefer own choices much more than objectively justifiable (Fellner, G., Güth, W., & Maciejevsky, B., 2004).

Illusion of control:

- Expectancy of a personal success probability inappropriately higher than the objective probability would warrant (Langer, 1975).

Overconfidence:

- Overestimation of one's performance, ability, level of control, or rate of work (Moore & Healy, 2008).
Unjustifiable belief that the knowledge acquired by experience in a field modifies the probability of success.

- Example 1: situations in which extended experience cannot modify such probability (e.g., lottery)
- Example 2: situations in which the extended experience modifies such a probability to a lesser degree than expected (e.g., experts in some fields)

Knowledge (mostly irrelevant) acquired by experience in a field maintains overconfidence.
Overconfidence in experts

- **DOMAINS IN WHICH GOOD EXPERT PERFORMANCE HAVE BEEN OBSERVED**
 - Weather forecasters
 - Livestock judges
 - Astronomers
 - Test pilots
 - Soil judges
 - Chess masters
 - Physicists
 - Mathematicians
 - Accountants
 - Grain inspectors
 - Photo interpreters
 - Insurance analysts
 - Nurses
 - Physicians
 - Auditors

- **DOMAINS IN WHICH POOR EXPERT PERFORMANCE HAVE BEEN OBSERVED**
 - Clinical psychologists
 - Psychiatrists
 - Astrologers
 - Student admissions
 - Court judges
 - Behavioral researchers
 - Counselors
 - Personnel selectors
 - Parole officers
 - Polygraph (lie detector) judges
 - Intelligence analysts
 - Stock brokers
 - Nurses
 - Physicians
 - Auditors

Shanteau (1992)

The role of overconfidence in problem gambling | Campitelli & Speelman
Overconfidence in experts

- Stock brokers (Gervais & Odean, 2001)
- CEOs (Malmendier & Tate, 2005)
Problem gamblers are more overconfident and accept more bets in the Geogia Gambling Task (Goodie, 2005)
A paradigm of illusion of expertise: Overconfidence and task difficulty

- Studies on overconfidence
 - Confidence judgements
 - Which city has the larger population: Oxford or York?
 - Please indicate your confidence on that you answered this question correctly (50%-100%)
 - Frequency judgements
 - How many questions do you believe you answered correctly?
A paradigm of illusion of expertise: Overconfidence and task difficulty

- Typical results
 - Tendency to overconfidence (Lichtenstein, Fischhoff & Phillips, 1982)
 - Hard/Easy effect:
 - overconfidence in difficult tasks and items, including “impossible tasks”
 - less overconfidence or underconfidence in easy tasks and items (Lichtenstein & Fischhoff, 1977)
Method

- Participants
 - 157 volunteers from the Buenos Aires metropolitan area
- Independent Variables
 - Domain: geography (intermediate) vs. Chess (“impossible”)
 - Type of task: location (intermediate) vs. Estimation (difficult)
 - Familiarity of items: local (intermediate) vs. World (difficult)
 - Type of design: representative vs. Selected
- Dependent Variables
 - Number of correct items
 - Frequency judgements
 - Bias
The role of overconfidence in problem gambling | Campitelli & Speelman

Methods

<table>
<thead>
<tr>
<th>¿La conoce? SI o NO</th>
<th>País</th>
<th>Cantidad de Habitantes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(categoría)</td>
</tr>
<tr>
<td>Gladstone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luxemburgo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>París</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kwinana</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honolulu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osaka</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciudad del Vaticano</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Livingston</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bagdad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaga Bandoro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guantanamo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dhaka</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adis Abeba</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kiev</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minsk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Porcentaje de respuestas correctas en cada columna % % %
Methods

<table>
<thead>
<tr>
<th>¿Lo conoce? SI o NO</th>
<th>País</th>
<th>Ranking ELO (categoría)</th>
<th>Ranking ELO (en número)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van Welly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nielsen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bareev</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gustafsson</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jakovenko</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karpov</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malakhov</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gashimov</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aleksandrov</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tregubov</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dominguez</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topalov</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carlsen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ponomariov</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timman</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Porcentaje de respuestas correctas en cada columna** | % | % | %

Categorías de ranking ajedrecístico Elo

- a) menos de 2350 puntos Elo
- b) 2350-2400 puntos Elo
- c) 2400-2450 puntos Elo
- d) 2450-2500 puntos Elo
- e) 2500-2550 puntos Elo
- f) 2550-2600 puntos Elo
- g) 2600-2650 puntos Elo
- h) 2650-2700 puntos Elo
- i) 2700-2750 puntos Elo
- j) más de 2750 puntos Elo

The role of overconfidence in problem gambling | Campitelli & Speelman
Illusion of expertise hypothesis:

- The overconfidence effect will be found only when participants construe a situation as one in which they have some degree of expertise:
 - Overconfidence in the domain of geography
 - No overconfidence in the “impossible domain” (i.e., chess)
 - Hard/Easy effect in the domain of geography
 - More overconfidence in estimation than in location
 - More overconfidence in world than in local
Results. Geography domain

Type of Task Bias Effect
Location: M = -3.6% Estimation M = +7.6%
F (1, 156) = 58.9, MS = 3.9, p < .001, partial η² = .27

Familiarity Bias Effect
Local M = -1.6% World M = +5.6%
F (1, 156) = 31.9, MS = 1.6, p = .001, partial η² = .17

The role of overconfidence in problem gambling | Campitelli & Speelman
Results. Geography vs. chess

- Bias in geography: M = 2%
- Bias in chess: M = -1.4%
A necessary condition to develop overconfidence is the construal of a situation as one in which one has some degree of expertise.

One of the variables that contributes to have such a construal is the experience in a domain.

Participants did not have experience in chess, thus they were not overconfident.

Participants had experience in geography, thus they showed the hard/easy effect.
Reduction of overconfidence?

- Reduction of overconfidence
 - Information on typical biases
 - Hot hand
 - Gambler’s fallacy
 - Problem:
 - Illusion of expertise may not disappear
- Reduction of illusion of expertise
 - Comparison of problem gambling with fields in which experts make biased judgements

The role of overconfidence in problem gambling | Campitelli & Speelman