Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Activation of CD4+ T cells in the presence of a nondepleting monoclonal antibody to CD4 induces a Th2-type response in vitro

Stumbles, P.A. and Mason, D. (1995) Activation of CD4+ T cells in the presence of a nondepleting monoclonal antibody to CD4 induces a Th2-type response in vitro. Journal of Experimental Medicine, 182 (1). pp. 5-13.

PDF - Published Version
Download (1MB)
Link to Published Version:
*Subscription may be required


In vitro experiments using purified rat CD4+ T cells in primary and secondary mixed leukocyte cultures (MLC) have been carried out to explore the mechanism of inhibition of cell-mediated autoimmune disease in the rat by a nondepleting monoclonal antibody (mAb) to CD4. Previous work has shown that W3/25, a mouse anti-rat CD4 mAb of immunoglobulin G1 isotype, completely prevents the development of the paralysis associated with experimental allergic encephalomyelitis (EAE) in Lewis rats, but does so without eliminating the encephalitogenic T cells. The in vitro experiments described in this study have shown that when CD4+ T cells were activated in the presence of the anti-CD4 mAb in a primary MLC, the synthesis of interferon (IFN) gamma, but not interleukin (IL) 2, was completely inhibited. After secondary stimulation, now in the absence of the mAb, the synthesis of IL-4 and IL-13 mRNA was greatly enhanced compared with that observed from CD4+ T cells derived from primary cultures in which the mAb was omitted. As IL-4 and IL-13 are known to antagonize cell-mediated immune reactions, and as EAE is cell-mediated disease, the data suggest that the W3/25 mAb controls EAE by modifying the cytokine repertoire of T cells that respond to the encephalitogen. The capacity for the mAb to suppress IFN-gamma synthesis provides, in part, an explanation for this change in cytokine production. These findings are discussed in terms of what is known of the factors that determine which cytokine genes are expressed on T cell activation. Possible implications for the evolution of T cell responses in human immunodeficiency virus infection are also discussed.

Item Type: Journal Article
Publisher: Rockefeller University Press
Copyright: 1995 Rockefeller University Press
Item Control Page Item Control Page


Downloads per month over past year