Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Enhancing chalcopyrite leaching by tetrachloroethylene-assisted removal of sulphur passivation and the mechanism of jarosite formation

Kartal, M., Xia, F.ORCID: 0000-0002-4950-3640, Ralph, D., Rickard, W.D.A., Renard, F. and Li, W. (2020) Enhancing chalcopyrite leaching by tetrachloroethylene-assisted removal of sulphur passivation and the mechanism of jarosite formation. Hydrometallurgy, 191 .

Link to Published Version: https://doi.org/10.1016/j.hydromet.2019.105192
*Subscription may be required

Abstract

Chalcopyrite (CuFeS2) is the primary ore mineral for copper, but leaching of this mineral under atmospheric conditions is slow due to the formation of surface passivating phases such as elemental sulphur and jarosite. Here, we studied chalcopyrite leaching in a sulphuric acid solution at 75 °C and 750 mV (relative to the standard hydrogen electrode), and found that after adding 20 vol% of tetrachloroethylene (TCE) into the leaching solution, elemental sulphur was dissolved from chalcopyrite and surface passivation was removed at the early stage of leaching. The removal of surface sulphur significantly enhanced the leaching rate by approximately 600% compared with TCE-free leaching. However, adding dimethyl sulfoxide (DMSO) did not improve the leaching rate. At the later stage of leaching, the increasing concentrations of Fe3+ from the dissolution of chalcopyrite and K+ possibly from the dissolution of minor amount of gangue minerals resulted in the precipitation of a potassium jarosite layer on the surface of chalcopyrite. The jarosite shell did not passivate TCE-free leaching due to its porous structure. However, in the case of leaching with TCE, elemental sulphur filled the pores, and the jarosite shell became nearly impermeable, resulting in passivation after 80% copper extraction. This study demonstrates a way for effective removal of sulphur passivation at the early stage of chalcopyrite leaching by adding sulphur dissolving solvent such as TCE, but to prevent jarosite formation at the later stage of leaching, it is necessary to keep the concentrations of Fe3+ and K+ at low levels.

Item Type: Journal Article
Murdoch Affiliation: Chemistry and Physics
Publisher: Elsevier BV
Copyright: © 2019 Elsevier B.V.
URI: http://researchrepository.murdoch.edu.au/id/eprint/53438
Item Control Page Item Control Page