Catalog Home Page

The energy loss may predict rupture risks of anterior communicating aneurysms: A preliminary result

Hu, P., Qian, Y., Lee, C-JORCID: 0000-0002-9360-0923, Zhang, H.Q. and Ling, F. (2015) The energy loss may predict rupture risks of anterior communicating aneurysms: A preliminary result. International Journal of Clinical and Experimental Medicine, 8 (3). pp. 4128-4133.

[img]
Preview
PDF - Published Version
Download (660kB) | Preview
Free to read: http://www.ijcem.com/files/ijcem0003807.pdf
*No subscription required

Abstract

Anterior communicating artery (ACoA) aneurysms are well documented to have a higher rupture risk compared with aneurysms at other locations. However, the risk predicting factors for these aneurysms still remain unclear due to the complex arteries geometries and flow patterns involved. The authors introduce a comprehensive method to quantitatively illustrate the development of ACoA aneurysms using a computational fluid dynamics (CFD) approach. Seven ACoA aneurysms, which included 2 ruptured and 5 unruptured aneurysms, were employed. Patient-specific whole anterior circulation geometries were segmented to simulate the real circumstances in vivo. The energy losses (EL) and flow architectures of these 7 aneurysms were evaluated using an algorithm modality. Overall, the 2 ruptured aneurysms, along with 1 unruptured aneurysm that was defined as highly likely to rupture due to ACoA location and a bleb sitting at the top of the dome, had a significantly larger EL and more complex and unstable flow architecture than the others. Two aneurysms had a negative value of EL indicating that the geometries with aneurysms of the anterior communicating complex (ACC) had a smaller loss of energy than the geometries without aneurysms. Despite a small sample size resulting in a low statistical significance, EL may serve as a development predictor of ACoA aneurysms.

Item Type: Journal Article
Publisher: e-Century Publishing
United Nations SDGs: Goal 3: Good Health and Well-Being
URI: http://researchrepository.murdoch.edu.au/id/eprint/53245
Item Control Page Item Control Page

Downloads

Downloads per month over past year