Profitable break crops for management of root lesion nematodes (RLN) and Rhizoctonia solani AG8

B Swift, A Butler, S Collins, C Wilkinson, S Kelly, D Huberli, V Stewart, J Lemon, P Mattingley, A Loi, M D’Antuono, A van Burgel, DPIRD; G Knell, ConsultAg
"Excuse me, sir, would you mind getting the door for us?"
Three major soil diseases of cereals in the Western Region

Rhizoctonia solani (AG8)

Root Lesion Nematodes (RLN)

Crown rot
Biology and impact of root lesion nematodes

• Microscopic translucent ‘roundworm’
• The two major WA RLN are *Pratylenchus neglectus* and *P. quasitereoides*
• Become active after rain and invade roots
• Average yield loss is 270 kg/ha for every 10 RLN/g soil

Collins et al. 2018
Root lesion nematode symptoms

Photo: DPIRD
P. neglectus response to crop rotation options – glasshouse trials 2017 (Collins et al. 2018)

Serradella is the clear winner!
Biology and impact of *Rhizoctonia solani* (AG8)

(© SARDI, PreDicta B course)

- Adapted to low-medium rainfall and non-wetting soils
- Hyphal network is sensitive to soil disturbance
- Inoculum increases most during Spring
- Yield losses can exceed 50%

(Image: Gupta Vadakattu, CSIRO)
Rhizoctonia symptoms

Hüberli 2015
Katanning rotation trial (Hüberli 2011)

![Graph showing Rhizoctonia solani log(pg DNA/g soil) across different crop rotations and PREDICTA B risk levels. Pre-sow, Chemical fallow, Canola (Cobbler), Wheat (Mace), Barley (Buloke) are compared. The graph indicates different risk levels: High, Med, Low.]
What are the management options for Rhizoctonia and nematodes?

Root lesion nematodes
- Variety choice
- Rotation with a break crop

Rhizoctonia
- In furrow and seed treatments (for cereals only)
- Soil disturbance e.g. tillage
- Rotation with canola
What if both diseases occur in the same paddock?

R. solani
High (0-50\% yield loss risk)

P. neglectus
Low (0-15\% yield loss risk)
What if both diseases occur in the same paddock?

P. quasitereoides High (0-50% yield loss risk)

P. neglectus Low (0-15% yield loss risk)

R. solani High (20-50% yield loss risk)
GRASS VALLEY
– *P. neglectus*, *P. quasitereoides*, *R. solani* (low levels)

2018

Canola Barley
Serradella Wheat – Calingiri
Subclover Wheat – Mace
Lupin Fallow
Chickpea
Field pea
Fallow

2019

Wheat

Failed chickpea
DUMBLEYUNG

P. *neglectus* – medium levels
R. solani – medium levels

<table>
<thead>
<tr>
<th>Year</th>
<th>Crop</th>
<th>Year</th>
<th>Crop</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>Canola, Serradella, Lupin, Faba bean</td>
<td>2019</td>
<td>Wheat</td>
</tr>
</tbody>
</table>
Pratylenchus neglectus in the soil at harvest (2018) - Dumbleyung

<table>
<thead>
<tr>
<th>Season Beginning</th>
<th>Lupins</th>
<th>Faba beans</th>
<th>Serradella</th>
<th>Canola</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

P. neglectus/g soil

- **High (Red)**
- **Med (Yellow)**
- **Low (Green)**

Risk Levels
- 0
- 5
- 10
- 15
- 20
- 25
- 30
Pratylenchus neglectus in the soil at harvest (2018) - Grass Valley

![Graph showing the P. neglectus/g soil for various crops](image-url)

- **Season Beginning**
- **Field peas**
- **Lupins**
- **Fallow (pulse)**
- **Serradella**
- **Fallow (cereal)**
- **Subclover**
- **Barley**
- **Wheat (Mace)**
- **Canola**
- **Wheat (Calingiri)**

Risk Level
- **High**
- **Med**
- **Low**
P. quasitereoides in the soil at harvest (2018)– Grass Valley

P. quasitereoides/g soil.
Total nematodes in the soil at harvest (2018) – Grass Valley

Season Beginning, Serradella, Lupins, Subclover, Field peas, Fallow (Pulse), Fallow (Cereal), Wheat (Mace), Canola, Barley, Wheat (Calingiri)

Total RLN/g soil

PREDICTA B RISK LEVEL
High, Med, Low
Rhizoctonia solani AG8 in the soil at harvest (2018) - Dumbleyung

- **Season Beginning**
- **Serradella**
- **Lupins**
- **Canola**
- **Faba beans**

Risk Levels:
- **High**
- **Med**
- **Low**

Predicta B

- R. Solani log pgDNA/g soil

- At harvest:
 - **Season Beginning**: High
 - **Serradella**: Medium
 - **Lupins**: Low
 - **Canola**: High
 - **Faba beans**: High
Rhizoctonia solani AG8 in the soil at harvest (2018) – Grass Valley

![Graph showing the log pgDNA/g soil for various crops.](image)

Season Beginning
- Subclover
- Serradella
- Lupins
- Fallow (pulse)
- Field peas
- Fallow (cereal)
- Canola
- Wheat (Mace)
- Barley
- Wheat (Calingiri)

R. solani log pgDNA/g soil
- 0
- 0.5
- 1
- 1.5
- 2
- 2.5
- 3

PREDICTA B RISK LEVEL
- High
- Med
- Low

The graph illustrates the log pgDNA/g soil levels for different crops, with aRisk Level prediction based on these levels.
Harvest/Biomass Yields and Gross Margins - Dumbleyung

<table>
<thead>
<tr>
<th>Crop</th>
<th>Yield t/ha</th>
<th>Gross Margin $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faba Bean</td>
<td>$64</td>
<td></td>
</tr>
<tr>
<td>Canola</td>
<td>$404</td>
<td></td>
</tr>
<tr>
<td>Serradella</td>
<td>$656</td>
<td></td>
</tr>
<tr>
<td>Lupin</td>
<td></td>
<td>$656</td>
</tr>
</tbody>
</table>
Harvest/Biomass yields – Grass Valley

Yield t/ha

- Canola
- Wheat (Mace)
- Field pea
- Wheat (Calingiri)
- Lupin
- Barley
- Subclover
- Serradella
Summary of crop impacts on pests/disease from Dumbleyung and Grass Valley trials in 2018

<table>
<thead>
<tr>
<th>Crop</th>
<th>Sub clover</th>
<th>Faba Bean</th>
<th>Field pea</th>
<th>Lupin</th>
<th>Serradella</th>
<th>Fallow</th>
<th>Canola</th>
<th>Mace (W)</th>
<th>Calingiri (W)</th>
<th>Barley</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. neglectus</td>
<td>😞</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>😞</td>
<td>😞</td>
<td>😞</td>
<td>😞</td>
</tr>
<tr>
<td>P. quasitereoides</td>
<td>😊</td>
<td>N/A</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>😞</td>
<td>😞</td>
<td>😞</td>
<td>😞</td>
</tr>
<tr>
<td>R. solani</td>
<td>😊</td>
<td>😞</td>
<td>😞</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>😞</td>
<td>😞</td>
<td>😞</td>
<td>😞</td>
</tr>
</tbody>
</table>

- 😞 Increases RLN or *R. solani*
- 😞 Slight increase in RLN or *R. solani*
- 😊 Decrease in RLN or no change to slight increase in *R. solani*

Weed control is important to manage *R. solani*
KEY MESSAGES

• Canola isn’t a break crop in a multi-peril paddock
• Legumes reduced root lesion nematode numbers
• Legumes didn’t increase *Rhizoctonia solani* levels as much as cereals
• Cereals increase the levels of root lesion nematodes and *Rhizoctonia solani*
ACKNOWLEDGEMENTS

- Project: DAW00256 “Building regional crop protection and production agronomy R&D capacity in regional Western Australia
- GRDC
- DPIRD
- CSBP
Thank you
Visit dpird.wa.gov.au

Important disclaimer
The Chief Executive Officer of the Department of Primary Industries and Regional Development and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it.

© State of Western Australia 2018