Catalog Home Page

Learning-based composite metrics for improved caption evaluation

Sharif, N., Bennamoun, M., White, L.R. and Shah, S.A.A. (2018) Learning-based composite metrics for improved caption evaluation. In: 56th Annual Meeting of Association for Computational Linguistics, 15 - 20 July 2018, Melbourne, Australia

[img]
Preview

Abstract

The evaluation of image caption quality is a challenging task, which requires the assessment of two main aspects in a caption: adequacy and fluency. These quality aspects can be judged using a combination of several linguistic features. However, most of the current image captioning metrics focus only on specific linguistic facets, such as the lexical or semantic, and fail to meet a satisfactory level of correlation with human judgements at the sentence-level. We propose a learning-based framework to incorporate the scores of a set of lexical and semantic metrics as features, to capture the adequacy and fluency of captions at different linguistic levels. Our experimental results demonstrate that composite metrics draw upon the strengths of standalone measures to yield improved correlation and accuracy.

Item Type: Conference Paper
Conference Website: https://www.aclweb.org/portal/
URI: http://researchrepository.murdoch.edu.au/id/eprint/50050
Item Control Page Item Control Page

Downloads

Downloads per month over past year