We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

4,200
Open access books available

116,000
International authors and editors

125M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Chapter

Interspecies Translation: Bovine Marbling to Human Muscular Dystrophy

Jose L. Valenzuela, Sally S. Lloyd, Edward J. Steele, Francis L. Mastaglia and Roger L. Dawkins

Abstract

There are interesting similarities and differences when comparing the histopathology of bovine marbling and human muscular dystrophy. At the simplest level, both conditions are characterized by genetically controlled and more or less inexorable replacement of muscle fibers with fat cells. At issue is whether an improved understanding of these two processes can lead to better outcomes for patients. There are many forms of dystrophy that differ in their genetics and their histopathology. There are also many forms of “marbling” ranging from the coarse to fine, epimysial, perimysial to endomysial and even to total replacement or steatosis. A detailed examination of marbling will provide a framework for further investigation of human dystrophy. Ultimately, the many genetic factors involved can be addressed through a better understanding of the metabolic pathways involved in marbling.

Keywords: synteny, muscular dystrophy, bovine marbling, adipogenesis

1. Introduction

The purpose of this review is to compare the genetics and histopathology of bovine marbling and human muscular dystrophy. Surprisingly, in spite of similarities, the literature suggests that marbling is a function of extreme adipogenesis whereas dystrophy is a consequence of fundamental defects in muscle itself. In fact, completely independent studies, as summarized here, reveal that similar genes have been implicated in some selected situations. Further, it is clear that the histopathology of some forms of dystrophy can resemble some forms of bovine marbling.

2. Marbling

Marbling is the term used to describe the presence of macroscopically visible fat within muscle (Figures 1 and 2). Coarse marbling refers to white areas of fat through and around muscle bundles, generally as continuous bands arising from the subcutaneous adipose tissue. By contrast, fine or “snowflake” marbling is characterized by more even white flecks resulting in pink rather than red muscle.
Muscular Dystrophies

These two forms may coexist but can be distinguished and quantified by skilled observers. Fine marbling is associated with improved taste and tenderness [1]. Further, it has been shown to relate to a preferred fatty acid profile. Accordingly, there is copious funding and now a substantial understanding of the environmental and genetic factors which favor fine rather than coarse.

3. Interspecies translation

Interspecies translation from cattle to man has unrecognized potential. Firstly, cattle are close to humans in evolutionary time and fall within that window of 50–100 million years of separation (or last common ancestor) which is characterized by very similar proteins but vastly different regulations of expression. The same window may explain the fact that the two species have synergized over some 40,000 years of contact and at least 7000 years of domestication. As one example, infections can be similar and, in some cases, are transmissible from one to the other, but close exposure to cattle is generally innocuous implying some form of immunity. As for example in the case of pox and tuberculosis. We argue that cattle are both relevant and relatively safe for translational studies.
Secondly, domestic cattle are well maintained, closely observed, and very well understood. There are huge databases and DNA banks which have been in existence for 50 years. Innumerable breeds can be compared often under different environmental conditions. Many of these breeds have been closed for hundreds of years and then intentionally crossed with each other. There is great potential for meaningful studies of population genetics and family and haplotype associations and, even more so, for structure-function genomics. Metabolic and inflammatory pathways are relatively well understood and are supported by inestimable funding available to ensure future supplies of meat, milk, cheese, butter, leather, and fertilizer.

Thirdly, cattle are plentiful and even more so than humans. Because the generation time and life expectancy are much shorter, there are excellent opportunities to study and treat genetically determined diseases prospectively [2].

4. Other instances of translation

White muscle disease or selenium/vitamin E deficiency occurs quite commonly in livestock raised on leached soils. The pathology resembles dystrophy in some respects. A mutation in the selenoprotein N gene (SEPN1) is responsible for some types of congenital muscular dystrophies and myopathies [3]. Kakulas [4] demonstrated that dystrophy-like changes explained the weakness observed in quokkas on Rottnest Island. Importantly, the condition could be corrected by treating the deficiency raising the possibility that human dystrophies could be reversible if the basic defect could be corrected.

5. Genomic approach

The term genome is used here to refer to the architecture of DNA sequences, whereas others have come to use the term in the context of single-nucleotide polymorphisms wherever they occur. The difference is fundamental to the discovery of gene clusters with coherent cis and trans interactions between conserved sequences known as ancestral haplotypes [5–9]. Many studies have shown that the SNP approach in livestock and humans fails to identify these critical sequences and can be misleading at best [10]. SNPs are neutral markers of parentage rather than functionally important [11].

One major benefit of ancestral haplotypes as opposed to SNPs is that it is possible to use interspecies translation. During mammalian evolution, polymorphic frozen blocks have diverged to some extent although the functionally important sequences tend to be conserved.

As shown in Figure 3 and Table 1, there are similarities between genomic regions on Hosa 17 and Bota 19. Although there have been architectural changes such as insertions and transversions, the gene content has been preserved.

Bota 19 was chosen as the reference because of its critical role in determining the degree of marbling between individuals of a breed, F1 crosses and between breeds [5, 12–14].

Hosa 17 was chosen for comparison because it contains some of the same genes such as TCAP. Further analysis revealed an extraordinary degree of preservation or synteny in spite of an evolutionary separation time of at least 50 million years and therefore millions of generations. Implicit is that there are functional reasons for similarities in genomic architecture.
Muscular Dystrophies

Gene Location Description Human muscular dystrophy Meat quality trait

MYH2
- Hosa 17p13.1
- Bota chr19: 30.13Mb
- MYH2 encodes the myosin heavy chain isoform that is expressed in fast type 2A muscle fibers
- Proximal myopathy and ophthalmoplegia is caused by heterozygous, compound heterozygous, or homozygous mutation in MYH2 leading to a lack of type 2a fibres [18]
- In pork, IMF, water holding capacity, and meat color [19]

PMP22
- Hosa 17p12
- Bota chr19: 33.35Mb
- Peripheral myelin protein-22
- Duplication of peripheral myelin protein 22 causes Charcot-Marie-Tooth disease type 1A [20]

TRPV2
- Hosa 17p11.2
- Bota chr19: 33.816Mb
- Transient receptor potential cation channel, V2: responds to heat and cations
- Muscular dystrophy is ameliorated in dystrophin-deficient mdx mice by dominant-negative inhibition of TRPV2 [21]

SREBF1
- Hosa 17p11.2
- Bota chr19: 35.23Mb
- Sterol regulatory element-binding protein-1 controls cholesterol homeostasis by stimulating transcription of sterol-regulated genes
- Mutations of LMNA that cause Emery-Dreifuss muscular dystrophy (EDMD2-AD) and familial partial lipodystrophy (FPLD2) result in less binding of lamin A to SREBP1 [22]
- SREBF1 is involved in adipogenesis and polymorphisms are associated with fatty acid composition of Japanese Black Cattle [23]

MPRIP
- Hosa 17p11.2
- Bota chr19: 35.557Mb
- Myosin phosphatase rho-interacting protein targets myosin phosphatase to regulate the phosphorylation of myosin light chain [24]
- Haplotypes differentiated by polymorphisms in MPRIP are associated with differences in intramuscular fat development in Wagyu [25]

SGCA
- Hosa 17q21.33
- Bota chr19: 37.11Mb
- Sarcoglycan, alpha
- Sarcolysins form part of the dystrophin-glycoprotein complex
- Mutations in SGCA cause limb-girdle muscular dystrophy type 2D. SGCB, SGCD, and SGCG are associated with LGMD types 2E, 2F, and 2C, respectively [26]

TCAP
- Hosa 17q2
- Bota chr19: 40.69Mb
- Titin-cap (telethonin) is a sarcomeric protein localized to the periphery of Z discs that define the border of the sarcomere as a structural anchor and signaling center
- Limb-girdle muscular dystrophy type 2G (LGMD2G) is caused by mutations in the TCAP gene [27]
- A polymorphism of TCAP is associated with IMF content and fatty acid composition of beef [13, 28]

Figure 3.

Marbling and muscular dystrophy are syntenic on bovine chromosome 19 (Bota 19) and human chromosome 17 (Hosa 17). Colored boxes represent segments with the same gene content. Crossed joining lines indicate inverted translocations. Numbers represent Mb. Synteny was determined by the positions of homologous genes in the human assembly Hg 38 and bovine assembly BosTaur8 located using the UCSC genome browser. Inverted sections and the exact location of boundaries between blocks were determined by dotplots comparing the two sequences. Adapted from: [13] Locations of Muscular Dystrophy Genes: (a) MYH2, (b) PMP22, (c) TRPV2, (d) SREBF1, (e) TCAP, (f) CAVIN1, (g) BECN1, (h) SGCA and Meat Quality Genes (A)SREBF1, (B) MPRIP, (C) TCAP, (D) GH, (E) UTS2R, (F) FASN shown here. See Table 1 for more information about these genes.
Interspecies Translation: Bovine Marbling to Human Muscular Dystrophy

Yet further analysis suggests some explanations for the co-location of similar genes. Irrespective of cis and trans interactions between the protein products, there is evidence of co-regulation (see, e.g., SREBP). In this context, we conclude that, although products and their regulating transcription factors are preserved, separation has permitted the insertion of species-specific elements, which control the quantitative differences between humans and cattle.

Importantly, as shown in Figure 3 and Table 1, Hosa 17 contains multiple candidates for involvement in human muscular dystrophy. There is even more complexity in explaining the multiple candidates as shown in Tables 2 and 3.

Thus, syntenic analysis has suggested a novel approach to identification of operative elements in marbling and in some forms of dystrophy.

<table>
<thead>
<tr>
<th>Gene location</th>
<th>Description</th>
<th>Human muscular dystrophy</th>
<th>Meat quality trait</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAVIN1</td>
<td>Cavin is an essential factor in the biogenesis of caveolae</td>
<td>Congenital generalized lipodystrophy, type 4; (CGL4) is caused by mutations in CAVIN1 that result in CAV 3 deficiency [29]</td>
<td></td>
</tr>
<tr>
<td>BECN1</td>
<td>Beclin-1 participates in the regulation of autophagy</td>
<td>Expression of BECN1 was reduced in patients with muscular dystrophies BTHLM1 and UMCD1 which were caused by COL6A1 mutations [30]</td>
<td>Involved in proteolysis and beef aging [31]</td>
</tr>
<tr>
<td>GHI</td>
<td>Growth Hormone</td>
<td></td>
<td>A polymorphism of growth hormone is associated with fatty acid composition of Wagyu beef [32]</td>
</tr>
<tr>
<td>FASN</td>
<td>Fatty Acid Synthase the key enzyme of de novo lipogenesis to produce saturated fatty acids</td>
<td></td>
<td>Fatty Acid Synthase is highlighted in GWAS for fatty acid content and composition of Wagyu and Hanwoo beef [33, 34]</td>
</tr>
<tr>
<td>UTS2R</td>
<td>A receptor abundant in heart and pancreas and responsive to Urotensin II which has potent vasoactive properties</td>
<td></td>
<td>A polymorphism of UTS2R is associated with IMF content of Wagyu x Holstein beef [39]</td>
</tr>
</tbody>
</table>

Table 1.

Details of relevant genes in Bota 19 and Hosa 17.

<table>
<thead>
<tr>
<th>Gene location</th>
<th>Description</th>
<th>Human muscular dystrophy</th>
<th>Meat quality trait</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSTN</td>
<td>Myostatin</td>
<td>Muscle hypertrophy was caused by a homozygous mutation in myostatin [35]</td>
<td>Mutations in myostatin cause double muscling in several cattle breeds [36]</td>
</tr>
<tr>
<td>CAPN3</td>
<td>Calpains are nonlysosomal intracellular cysteine proteases. CAPN3 is a muscle-specific large subunit</td>
<td>Limb-girdle muscular dystrophy type 2A (LGMD2A) is caused by homozygous or compound heterozygous mutation in CAPN3</td>
<td>SNPs within CAPN3 are associated with tenderness in Bos Indicus cattle [37]</td>
</tr>
<tr>
<td>Gene location</td>
<td>Description</td>
<td>Human muscular dystrophy</td>
<td>Meat quality trait</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>--------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>CAPN1 Hosa 1q13.1</td>
<td>m-Calpain</td>
<td></td>
<td>Two CAPN1 genetic markers are associated with tenderness in Brahman beef [38]</td>
</tr>
<tr>
<td>DMD Hosa Xp21.2-1</td>
<td>Dystrophin maintains the structural integrity of myofibrils</td>
<td>Duchene muscular dystrophy</td>
<td></td>
</tr>
<tr>
<td>MYOT Hosa 5p31.2</td>
<td>Myotilin directly binds F-actin and efficiently cross-links actin filaments and prevents filament disassembly</td>
<td>LGMD1A is caused by heterozygous mutation in the MYOT. It is characterized by adult-onset muscle weakness, progressing from the hip to the shoulder girdle</td>
<td></td>
</tr>
<tr>
<td>SGCD Hosa 5q33.2-3</td>
<td>Sarcoglycan, delta is expressed in skeletal and heart muscles and to a lesser extent in smooth muscle. Delta-sarcoglycan is localized at the sarcolemma</td>
<td>Muscular dystrophy, limb-girdle, type 2F; LGMD2F</td>
<td></td>
</tr>
<tr>
<td>SGCE Hosa 7q21.3</td>
<td>Epsilon-sarcoglycan</td>
<td>Myoclonus-dystonia is a genetically heterogeneous disorder characterized by myoclonic jerks affecting mostly proximal muscles</td>
<td></td>
</tr>
<tr>
<td>SGC at Bota chr12</td>
<td>Beta-sarcoglycan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COL6A1 COL6A2 21q22.3</td>
<td>Collagen, type VI, alpha-1, and alpha-2. Members of the collagen VI family form distinct networks of microfibrils in connective tissue and interact with other extracellular matrix components</td>
<td>Ullrich congenital muscular dystrophy 1 Bethlem myopathy 1</td>
<td></td>
</tr>
<tr>
<td>COL6A3 2q37.3</td>
<td>COLLAGEN, TYPE VI, ALPHA-3</td>
<td>Ullrich congenital muscular dystrophy 1, Bethlem myopathy 1 Dystonia 27</td>
<td></td>
</tr>
</tbody>
</table>
Interspecies Translation: Bovine Marbling to Human Muscular Dystrophy

DOI: http://dx.doi.org/10.5772/intechopen.82685

<table>
<thead>
<tr>
<th>Gene location</th>
<th>Description</th>
<th>Human muscular dystrophy</th>
<th>Meat quality trait</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITGA7 12q13.2</td>
<td>The alpha-7 integrin is a specific cellular receptor for the basement membrane proteins laminin-1, laminin-2, and laminin-4. The alpha-7 subunit is expressed mainly in skeletal and cardiac muscles and may be involved in differentiation and migration processes during myogenesis.</td>
<td>Congenital muscular dystrophy</td>
<td></td>
</tr>
<tr>
<td>EMD Xq28</td>
<td>Emerin is found along the nuclear rim of many cell types and is a member of the nuclear lamina-associated protein family.</td>
<td>Emery-dreifuss muscular dystrophy, L, X-LINKED; EDMD1</td>
<td></td>
</tr>
<tr>
<td>ATP2A1 (SERCA-1) 16p11.2</td>
<td>Calcium-transporting ATPase lowers cytoplasmic Ca(2+) concentration by pumping Ca(2+) to luminal or extracellular spaces. ATP2A1 is the ATPase type found in fast twitch muscles.</td>
<td>Brody myopathy</td>
<td></td>
</tr>
<tr>
<td>DES 2q35</td>
<td>Desmin is the muscle-specific member of the intermediate filament (IF) protein family. It is one of the earliest myogenic markers, both in the heart and somites, and is expressed in satellite stem cells and replicating myoblasts.</td>
<td>Myopathy, myofibrillar, 1</td>
<td></td>
</tr>
<tr>
<td>PLEC 8q24.3</td>
<td>Plectin-1 is one of the largest polypeptides known and is believed to provide mechanical strength to cells and tissues by acting as a cross-linking element of the cytoskeleton.</td>
<td>Epidermolysis bullosa with muscular dystrophy, Limb-girdle type 2Q</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.
Details of relevant genes outside of Hosa 17/Bota 19.

<table>
<thead>
<tr>
<th>Absent protein</th>
<th>Dystrophy type</th>
<th>Gene location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarcoglycans</td>
<td>Limb-girdle muscular dystrophies 2C-F</td>
<td>SGCA Hosa 17q21.33 Bota 19 SGCBI Hosa chr6 SGCD Hosa Xp33.2 Bota 7 SGCE Hosa 7q21.3 Bota 4 SGCGB Hosa chr12</td>
</tr>
<tr>
<td>Dysferlin</td>
<td>Limb-girdle muscular dystrophy 2B</td>
<td>DYSF Hosa 2p3.2</td>
</tr>
<tr>
<td>Caveolin-3</td>
<td>Limb-girdle muscular dystrophy 1a, rippling muscle disease, hyperCKemia</td>
<td>CAV3 Hosa 3p25.3 Bota 22 CAVH1 Hosa 17p21.2 Bota 19</td>
</tr>
<tr>
<td>Telethonin</td>
<td>Limb-girdle muscular dystrophy 2G</td>
<td>TCAP Hosa 17q12 Bota 19</td>
</tr>
<tr>
<td>Laminin a2</td>
<td>MDC1A (“merosin”-deficient congenital muscular dystrophy)</td>
<td>LAMA2 Hosa 6q22.33, Bota 9</td>
</tr>
<tr>
<td>Collagen VI</td>
<td>Ullrich congenital muscular dystrophy</td>
<td>COL6A1&2 Hosa 2q32.3 COL6A3 Hosa 2q37.3</td>
</tr>
<tr>
<td>Integrin alpha7</td>
<td>Mild congenital dystrophy/myopathy</td>
<td>ITGA7 Hosa 12q13.2</td>
</tr>
</tbody>
</table>
Muscular Dystrophies

6. Histopathological approach

The substantial range of changes found in the human dystrophies is illustrated in the study of Dubowitz et al. [15].

We are fortunate in having histological muscle samples from cattle with degrees of marbling [14]. Some of these changes are illustrated in Figures 4–8 from three animals (M508, M621, and M129) fed a standard ration for 471, 443, and 481 days respectively. The macroscopic measure of marbling (MSA MB) ranged from high to moderate (1100, 920 and 820, respectively) as expected in high content Wagyu (88, 75, and 63%, respectively). A common feature is the invasion of adipose tissue between intact muscle fascicles (Figure 4). For the most part, the process extends along the perimysium leading to variation in fiber size, staining of myofibers (Figures 5 and 6), and the formation of residual islands of myofibers (Figure 7), which suggests an explanation for fine (see Figure 1) rather than coarse (see Figure 2) marbling; fine is due to more aggressive invasion reflecting quantitative differences in gene regulation.

Table 3. Protein accumulations and deficits in dystrophy.

<table>
<thead>
<tr>
<th>Absent protein</th>
<th>Dystrophy type</th>
<th>Gene location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calpain-3 (easier to assess on immunoblots than sections)</td>
<td>Limb-girdle muscular dystrophy 2A</td>
<td>CAPN3 Hosa 15q15.1 Bota 10</td>
</tr>
<tr>
<td>Emerin</td>
<td>X-Linked emery-dreifuss muscular dystrophy</td>
<td>EMD Hosa Xq28</td>
</tr>
<tr>
<td>SERCA 1</td>
<td>Brody disease</td>
<td>ATP2A1 Hosa 16p11.2</td>
</tr>
<tr>
<td>Plectin</td>
<td>Epidermolysis bullosa with muscular dystrophy, limb-girdle dystrophy 2Q</td>
<td>PLEC Hosa 8q24.3</td>
</tr>
<tr>
<td>LAMP-2</td>
<td>Danon disease</td>
<td>LAMP2 Xq24</td>
</tr>
<tr>
<td>Accumulating protein</td>
<td>Dystrophy type</td>
<td>Gene location</td>
</tr>
<tr>
<td>Actin</td>
<td>Congenital actin myopathy/nemaline myopathy</td>
<td>ACTA1 Hosa 1q24.13 TPM3 Hosa 1q23</td>
</tr>
<tr>
<td>Myosin</td>
<td>Myosin storage myopathy</td>
<td>MYH7 Hosa 14q11</td>
</tr>
<tr>
<td>Myotilin</td>
<td>Myotilin-related myofibrillar myopathy</td>
<td>MYOT Hosa 5q31.2</td>
</tr>
<tr>
<td>Desmin</td>
<td>Desmin myopathy</td>
<td>DES Hosa 2q35 SEPN1 Hosa 1p36</td>
</tr>
</tbody>
</table>

(Adapted from [15] Table 6.3 dystrophy related protein changes detectable with immunohistochemistry).

Figure 4. Highly marbled loin muscle shows a pattern of fat arborization and invasion with adipocytes predominantly in the perimysium, between muscle fascicles. Note extensive vascularization centrally within the fat. M508 (wy63 ak25 dx13), MSA MB 1100, DOF 471. See also Figure 1.
Figure 5.
Histological section of Sacrocaudalis dorsalis medialis of a highly marbled, high Wagyu content (88%) steer M508 (wy63 ak25 dx13), showing variation of fiber size, with the presence of rounded fibers, internal nuclei, abundant perimysial connective tissue, and considerable adipose tissue. Formalin-fixed H & E, MSA MB 1100, DOF 471. CYO lab number Ch18/110G. See also Figure 1 for macroscopic comparison.

Figure 6.
Histological section of Sacrocaudalis dorsalis medialis of a highly marbled, high Wagyu content (75%) heifer M621 (wy75 dx25). Field selected to show eosinophilic rounded fibers of variable size, with abundant perimysial connective tissue in their proximity. Formalin-fixed H & E, MSA MB 820, DOF 471. CYO lab number Ch18/109Y. See also Figure 2 for macroscopic features such as coarse marbling.

Figure 7.
Histological section of Sacrocaudalis dorsalis medialis of a highly marbled, high Wagyu content steer (88%) (wy63 ak25 dx13), showing aggressive adipose invasion, with abundant perimysial connective tissue and the generation of island-like areas of fibers with evident architectural changes including shrinkage of fibers as the front advances. Formalin-fixed H & E, MSA MB 1100, DOF 471. CYO lab number Ch18/110G. See also Figures 1, 4, and 5.
In some fields, there are collections of nuclei including intracytoplasmic (Figure 8). These observations have led us to the conclusion that the extent and type of marbling is a function of the aggressive extension of the advancing adipocytes with secondary loss of myocytes.

Figure 8.
Histological section of Sacrocaudalis dorsalis medialis of a highly marbled, high Wagyu content steer (63%), M129 (s963 dx33). Higher power selected to illustrate variability of fiber size, affinity for eosin, and the presence of intracytoplasmatic and interstitial nuclei. Formalin-fixed H & E, MSA MB 880, DOF 481. CYO lab number Ch18/135Z.

Figure 9.
Examples of adipocyte intrusion in human muscular dystrophy. (a) Case of limb-girdle muscular dystrophy showing most fibers surrounded by endomysial connective tissue with some adipocytes (*) ([15], Figure 13.1b). (b) From the deltoid muscle of a patient with ophthalmoplegia associated with a MYH2 mutation showing fatty infiltration, mild fiber atrophy, fibers with internal nuclei, an irregular myofibrillar network, and lobulated fibers ([15], Figure 15.27). (c) From the quadriceps of a patient with facioscapulohumeral dystrophy at 42 years showing pronounced proliferation of connective tissue and fat with a wide variation of muscle cell size and many internal nuclei ([15], Figure 14.1b). (d) Low power view of a biopsy from a case of congenital muscular dystrophy showing only islands of fibers in a vast amount of adipose tissue ([15], Figure 4.30).
Some forms of human dystrophy have very similar histopathology, for example, congenital myopathies as illustrated by Dubowitz et al. [15] and reproduced here in Figure 9.

As in human dystrophies, there can be different degrees depending upon the muscle group and the field selected. Here, we focus on *Sacrocaudalis dorsalis media-lis*, because it is convenient to biopsy, whereas the loin can only be accessed readily post-mortem.

Accordingly, it will be possible to undertake detailed time course studies so as to monitor sequential changes and eventually responses to therapy. Future studies should also address bovine steatosis. The pathology [16, 17] is different from marbling. Adipocytes occur within rather than around fascicles (Figure 10) suggesting that the process may be a function of differentiation of stem cells, rather than invasion [1].

7. Conclusion

In spite of similarities in pathology and genomics, there is more to learn before precise translation is possible. However, there are strong indications that such approaches could have important implications for human dystrophies and other muscle diseases. Moreover, a better understanding of the control factors and signals responsible for determining the relative proportions of muscle and adipose tissue in bovine muscles, and how they are coordinated, is fundamental and will be crucial to understanding more fully the significance of adipose tissue replacement in human dystrophies and to developing new therapeutic strategies for these diseases.

Acknowledgements

This research was supported by the CY O’Connor ERADE Village Foundation as publication number MS1803. The authors acknowledge the earlier contributions of J F Williamson and would like to thank JR Dawkins and Melaleuka Stud for access to the cattle used in this study.

Conflict of interest

Collectively, the authors associated with the CY O’Connor ERADE Village Foundation have an interest in the work described in this manuscript as it forms part of the foundation’s intellectual property.
Muscular Dystrophies

Author details

Jose L. Valenzuela1,2, Sally S. Lloyd1,2, Edward J. Steele1,3, Francis L. Mastaglia4 and Roger L. Dawkins1,2*

1 CY O’Connor ERADE Village Foundation, North Dandalup, Australia

2 Centre for Innovation in Agriculture, Murdoch University, Murdoch, Australia

3 Melville Analytics Pty Ltd, Melbourne, VIC, Australia

4 Queen Elizabeth II Medical Centre, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia

*Address all correspondence to: rldawkins@cyo.edu.au

IntechOpen

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References

[34] Uemoto Y, Abe T, Tameoka N, et al. Whole-genome association study for fatty acid composition of oleic acid
Interspecies Translation: Bovine Marbling to Human Muscular Dystrophy
DOI: http://dx.doi.org/10.5772/intechopen.82685

