Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Mechanical alterations during 800-m Self-Paced track running

Girard, O., Millet, G. and Micallef, J-P (2017) Mechanical alterations during 800-m Self-Paced track running. International Journal of Sports Medicine, 38 (4). pp. 314-321.

Link to Published Version:
*Subscription may be required


We assessed the time course of running mechanical alterations during an 800-m. On a 200-m indoor track, 18 physical education students performed an 800-m self-paced run. Once per lap, ground reaction forces were measured by a 5-m-long force platform system, and used to determine running kinetics/kinematics and spring-mass characteristics. Compared with 100 m (19.4±1.8 km.h-1) running velocity progressively decreased at 300, 500 m but levelled-off at 700 m marks (-5.7±4.6, -10.4±8.3, and -9.1±13.5%, respectively; P<0.001). Stride length (-8.5±2.3%, P<0.01) and frequency (-1.0±1.5%, P=0.05) along with peak braking (-7.5±4.4%, P<0.05) and push-off forces (-5.1±7.2%, P<0.05) decreased from 100 m to 700 m. Peak vertical forces (-3.0±2.7%; P>0.05) and leg compression (+2.8±3.9%; P>0.05) remained unchanged, whereas centre of mass vertical displacement (+24.0±7.0%; P<0.001) increased during the run. Vertical stiffness decreased (-18.1±4.4%; P<0.001), whereas leg stiffness was unchanged (-3.2±4.6%; P>0.05). During an 800 m by physical education students, highest running velocity was achieved early during the run, with a progressive decrease in the second half of the trial. While vertical ground force characteristics remained unchanged, non-specialist runners produced lower peak braking and push-off forces, in turn leading to shorter stride length. Spring-mass model characteristics changed toward lower vertical stiffness values, whereas leg stiffness did not change.

Item Type: Journal Article
Publisher: Thieme
Copyright: © Georg Thieme Verlag KG Stuttgart
Item Control Page Item Control Page