Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Thermal treatment of spodumene (LiAlSi2O6) for lithium extraction

Abdullah, Arif A. (2019) Thermal treatment of spodumene (LiAlSi2O6) for lithium extraction. PhD thesis, Murdoch University.

[img]
PDF - Whole Thesis
Embargoed until January 2021.

Abstract

This work provides a detailed description of the qualitative and quantitative mineralogical, dynamic, as well as kinetic aspects for the structural transformation of α-spodumene (α-LiAlSi2O6), and advances the industrial processing of spodumene by introducing two novel alternative technologies that are relatively straightforward and potentially cost-effective. Spodumene, the most abundant lithium-containing mineral, usually undergoes calcination at an extreme temperature of about 1100 ºC and strong-acid digestion during industrial processing. The calcination process stimulates the structural transformation of spodumene from its naturally occurring pyroxene-framework α-phase into the relatively more reactive β-spodumene of the keatite (SiO2) structure. On the other hand, the acid digestion approach facilitates the production of water-soluble lithium compounds (mainly lithium sulfate Li2SO4). This study resolves the technical obstacles associated with cheaper (and safer) processing of spodumene concentrates.

The project incorporated intensive experiments to analyse the thermally-activated changes during the calcination of spodumene. The combination of hot-stage and high-temperature synchrotron X-ray diffractometry (XRD) enabled in-situ mineralogical analysis of the transformation processes, identifying (and quantifying) the resulting phases at various temperatures. Each of the diffractometry techniques complements the heating rate and temperature limitations of each other. Likewise, accurate calorimetric and thermogravimetric analyses yielded the corresponding thermodynamic and kinetic functions, allowing the precise determination of the minimum energy required for the heat treatment process. Distinctly, the project also involved detailed investigation on roasting of spodumene with the most effective additives, CaO and Na2SO4, for better extraction of lithium. The addition of these chemicals resulted in the formation of water-soluble lithium compounds via the roasting process at a relatively low temperature (800 – 900 ºC). Set of experiments determined the best condition for minimising these additives and maximising the productivity of lithium. Atomic absorption spectrometry (AAS) quantitated the recovered lithium from the roasted spodumene concentrate. Techniques, such as X-ray fluorescence (XRF) and AAS, attested the chemical analyses of the raw spodumene concentrate. The Match! Software allowed phase identification, while HSC 7.1 software facilitated the estimation of energies.

The results of this thesis have demonstrated that the transition reaction of spodumene occurs via different pathways, depending on the amorphicity and the thermal history of the mineral. The results have also identified the intermediate species and clarified their appearance as a function of temperature and heating rate, and particle size, relative to the final phase of β-spodumene. For instance, the formation of the recently reported γ-spodumene is initiated by crystallisation of minuscule amorphous materials in the concentrated sample at slow heating conditions, while fast initial heating to 800 ºC prompts the emergence of a newly-identified phase of β-quartzss, at low temperatures of less than 900 ºC. Requiring an operating temperature of above 1000 ºC, the calcination of spodumene concentrate has been elucidated to adopt slow kinetics, with a high activation energy of more than 800 kJ mol-1 and significant dependency on the degree of conversion.

The combined outcomes of this study are instrumental in optimising the energy cost of lithium extraction from spodumene mineral in practical operations. In particular, this thesis reveals that, the roasting of spodumene concentrate with a small amount of CaO reduces the transformation temperature by 150 – 200 ºC as determined by in-situ XRD, which translates into important energy saving during the calcination of spodumene in the first step of the commercial acid digestion process. Roasting of spodumene with CaO and Na2SO4 at 882 ºC for 2 h results in producing a water-leachable lithium compound of LiNaSO4 with 94 % lithium recovery. Thus, the roasting of spodumene concentrate with these two additives eliminates the aggressive acidic treatment and decreases the operating temperature of the kiln.

Item Type: Thesis (PhD)
Murdoch Affiliation: Chemistry and Physics
Supervisor(s): Dlugogorski, Bogdan and Senanayake, Gamini
URI: http://researchrepository.murdoch.edu.au/id/eprint/45476
Item Control Page Item Control Page