Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

The Meat Standards Australia Index indicates beef carcass quality

McGilchrist, P., Polkinghorne, R.J., Ball, A.J. and Thompson, J.M. (2019) The Meat Standards Australia Index indicates beef carcass quality. Animal, 13 (8). pp. 1750-1757.

[img]
Preview
PDF - Published Version
Download (194kB) | Preview
Free to read: https://doi.org/10.1017/S1751731118003713
*No subscription required

Abstract

A simple index that reflects the potential eating quality of beef carcasses is very important for producer feedback. The Meat Standards Australia (MSA) Index reflects variation in carcass quality due to factors that are influenced by producers (hot carcass weight, rib fat depth, hump height, marbling and ossification scores along with milk fed veal category, direct or saleyard consignment, hormonal growth promotant status and sex). In addition, processor impacts on meat quality are standardised so that the MSA Index could be compared across time, breed and geographical regions. Hence, the MSA Index was calculated using achilles hung carcasses, aged for 5 days postmortem. Muscle pH can be impacted by production, transport, lairage or processing factors, hence the MSA Index assumes a constant pH of 5.6 and loin temperature of 7 o C for all carcasses. To quantify the cut weight distribution of the 39 MSA cuts in the carcass, 40 Angus steers were sourced from the low (n=13), high (n=15) and myostatin (n=12) muscling selection lines. The left side of each carcass was processed down to the 39 trimmed MSA cuts. There was no difference in MSA cut distribution between the low and high muscling lines (P>0.05), although there were differences with nine cuts from the myostatin line (P<0.05). There was no difference in the MSA Index calculated using actual muscle percentages and using the average from the low and high muscling lines (R 2 =0.99). Different cooking methods impacted via a constant offset between eating quality and carcass input traits (R 2 =1). The MSA Index calculated for the four most commercially important cuts was highly related to the index calculated using all 39 MSA cuts (R 2 =0.98), whilst the accuracy was lower for an index calculated using the striploin (R 2 =0.82). Therefore, the MSA Index was calculated as the sum of the 39 eating quality scores predicted at 5 days ageing, based on their most common cooking method, weighted by the proportions of the individual cut relative to total weight of all cuts. The MSA Index provides producers with a tool to assess the impact of management and genetic changes on the predicted eating quality of the carcass. The MSA Index could also be utilised for benchmarking and to track eating quality trends at farm, supply chain, regional, state or national levels.

Item Type: Journal Article
Publisher: Cambridge University Press
Copyright: © 2019 The Animal Consortium
United Nations SDGs: Goal 12: Responsible Consumption and Production
URI: http://researchrepository.murdoch.edu.au/id/eprint/44941
Item Control Page Item Control Page

Downloads

Downloads per month over past year