Catalog Home Page

Trapping of gas bubbles in water at a finite distance below a Water–Solid interface

Esteso, V., Carretero-Palacios, S., Thiyam, P., Míguez, H., Parsons, D.F.ORCID: 0000-0002-3956-6031, Brevik, I. and Boström, M. (2019) Trapping of gas bubbles in water at a finite distance below a Water–Solid interface. Langmuir, 35 (12). pp. 4218-4223.

Link to Published Version: https://doi.org/10.1021/acs.langmuir.8b04176
*Subscription may be required

Abstract

Gas bubbles in a water-filled cavity move upward because of buoyancy. Near the roof, additional forces come into play, such as Lifshitz, double layer, and hydrodynamic forces. Below uncharged metallic surfaces, repulsive Lifshitz forces combined with buoyancy forces provide a way to trap micrometer-sized bubbles. We demonstrate how bubbles of this size can be stably trapped at experimentally accessible distances, the distances being tunable with the surface material. By contrast, large bubbles (≥100 μm) are usually pushed toward the roof by buoyancy forces and adhere to the surface. Gas bubbles with radii ranging from 1 to 10 μm can be trapped at equilibrium distances from 190 to 35 nm. As a model for rock, sand grains, and biosurfaces, we consider dielectric materials such as silica and polystyrene, whereas aluminium, gold, and silver are the examples of metal surfaces. Finally, we demonstrate that the presence of surface charges further strengthens the trapping by inducing ion adsorption forces.

Item Type: Journal Article
Murdoch Affiliation: School of Engineering and Information Technology
Publisher: ACS Publications
Copyright: © 2019 American Chemical Society
URI: http://researchrepository.murdoch.edu.au/id/eprint/44857
Item Control Page Item Control Page