Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Light management technologies for increasing algal photobioreactor efficiency

Nwoba, E.G.ORCID: 0000-0003-0397-2369, Parlevliet, D.A., Laird, D.W.ORCID: 0000-0001-7550-4607, Alameh, K. and Moheimani, N.R.ORCID: 0000-0003-2310-4147 (2019) Light management technologies for increasing algal photobioreactor efficiency. Algal Research, 39 . Article 101433.

Link to Published Version:
*Subscription may be required


The ever-increasing demand for food, valuable bio-based compounds and energy has triggered the development of novel and sustainable resources. Microalgae are a promising source of sustainable high-value products. The need for light (suitable intensity and wavelength) and temperature control in microalgal cultures remains the most significant challenge limiting their photosynthetic efficiency and productivity. Appropriate light management has the potential to concurrently maximize photosynthetic productivity and control the temperature of microalgal photobioreactors resulting in a reduction in overall production costs. Here, we review innovations to improve light conversion efficiency and temperature control, such as spectral filtration, plasmonic waveguides, spectral shifting, wireless light emitters and insulated glazing, which typically increase the photosynthetic productivity, while avoiding overheating in photobioreactors. Infrared filtering reduces culture overheating in closed photobioreactors. Spectral shifting, plasmonic waveguiding, switchable glass and insulated glazing technologies can improve light quality received by algal cells. Improving light efficiency and distribution in the algal cultures can significantly enhance biomass productivity when used in open or closed cultivation systems. Based on this background, we illuminate the effectiveness of embedding the above-mentioned technologies into a novel insulated-glazed photovoltaic flat panel photobioreactor for simultaneously increasing the biomass and generating electricity, thus, eliminating the need for cooling systems. This approach opens the way for the development of cost-effective, low-carbon-footprint grid-independent integrated algae-based biorefineries with multi-product yields.

Item Type: Journal Article
Murdoch Affiliation(s): School of Engineering and Information Technology
School of Veterinary and Life Sciences
Publisher: Elsevier BV
Copyright: © 2019 Elsevier B.V.
Item Control Page Item Control Page