Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

No difference in motor cortical inhibition between young and Middle-Aged adults: A TMS-EEG Study

Schouten, Lucy (2018) No difference in motor cortical inhibition between young and Middle-Aged adults: A TMS-EEG Study. Honours thesis, Murdoch University.

[img]
Preview
PDF - Whole Thesis
Download (704kB) | Preview

Abstract

It is well established that ageing is associated with a decline in manual dexterity. An important neural process for the control of manual dexterity is motor cortical inhibition, which is the process by which neural activity within the motor cortex is supressed. Reductions in motor cortical inhibition may contribute to the age-related decline in manual dexterity. Paired-pulse transcranial magnetic stimulation (TMS) can be used to measure long-interval intracortical inhibition (LICI) in the motor cortex. Previous literature examining differences in LICI between young and older adults have produced conflicting results. In addition, none have included a middle-aged group of participants. The purpose of the current study was to determine whether there are differences in LICI between young and middle-aged adults. An emerging technique that combines TMS with electroencephalography (EEG) was used to measure LICI. In 12 young and 13 middle-aged participants, the TMS-evoked potential (TEP; recorded from EEG) reflected the motor cortical response to sham TMS, single-pulse TMS, and paired-pulse TMS. The TEPs generated by single- and paired-pulse TMS did not differ between young and middle-aged adults. Therefore, there is no evidence from the current study to suggest differences in motor cortical inhibition between young and middle-aged adults. However, these results are speculative as the TEPs generated by sham and single-pulse TMS were highly similar, suggesting that artefacts heavily influenced the TEPs. It is critical that future studies are able to minimise the artefacts during TMS-EEG recording, and reliably identify and remove artefacts from the EEG data.

Item Type: Thesis (Honours)
Murdoch Affiliation: School of Psychology and Exercise Science
Supervisor(s): Vallence, Anne-Marie and Fujiyama, Hakuei
URI: http://researchrepository.murdoch.edu.au/id/eprint/43012
Item Control Page Item Control Page

Downloads

Downloads per month over past year