Palindromes in starlike trees

AMY GLEN

School of Engineering & Information Technology
Murdoch University
90 South Street, Murdoch, WA 6150
Australia
A.Glen@murdoch.edu.au

JAMIE SIMPSON

Department of Mathematics and Statistics
Curtin University
Bentley, WA 6102
Australia
Jamie.Simpson@curtin.edu.au

W. F. SMYTH

Department of Computing and Software
McMaster University
Hamilton, Ontario L8S 4K1
Canada
smyth@mcmaster.ca

Abstract

In this note, we obtain an upper bound on the maximum number of distinct non-empty palindromes in starlike trees. This bound implies, in particular, that there are at most $4n$ distinct non-empty palindromes in a starlike tree with three branches each of length n. For such starlike trees labelled with a binary alphabet, we sharpen the upper bound to $4n - 1$ and conjecture that the actual maximum is $4n - 2$. It is intriguing that this simple conjecture seems difficult to prove, in contrast to the proof of the bound.

1 Introduction

We use the usual notation and terminology from graph theory and combinatorics on words.
A word of n elements is represented by an array $x = x[1..n]$, with $x[i]$ being the ith element and $x[i..j]$ the factor of elements from position i to position j. If $i = 1$ then the factor is a prefix and if $j = n$ it is a suffix. The letters in x come from some alphabet A. The length of x, written $|x|$, is the number of letters x contains. If $x = x[1..n]$ then the reverse of x, written $R(x)$, is $x[n]x[n-1] \cdots x[1]$. A word x that satisfies $x = R(x)$ is called a palindrome.

A starlike tree T is a tree consisting of a root vertex, called the central vertex, from which there extends 3 or more branches (i.e., simple paths) where each edge of a path directed from the central vertex to the terminal vertex (leaf) of a branch is labelled with a single letter of an alphabet A. Thus every path from the central vertex to a leaf in the tree, as well as every simple path passing in reverse order from a leaf through the central vertex to the leaf of another branch, constitutes a word. If a starlike tree T consists of k branches, each of length n, we say that T is a (k,n)-starlike tree.

![Figure 1: A $(3,4)$-starlike tree with edges labelled using the binary alphabet \{a, b\}.
](image)

The maximum number of distinct non-empty palindromes in a word of length n is n (see Lemma 1 below). Moving from words to graphs we can think of this as the maximum number of distinct non-empty palindromes in an edge-labelled path P_n of length n where the labels are single letters. This suggests extending the problem to other graphs. In [4] it was shown that the maximum number of distinct non-empty palindromes in a cycle C_n is less than $5n/3$. For n divisible by 3 the so-called Biggles Words contain $5n/3 - 2$ distinct palindromes, so the bound is almost sharp. Brlek, Lafrenière and Provençal [1] studied the palindromic complexity of trees and constructed families of trees with n edges containing $\Theta(n^{1.5})$ distinct palindromes. They conjectured that there are no trees with asymptotically larger palindromic complexity than that, and this was later proved by Gawrychowski, Kociumaka, Rytter and Waleń [3].

In this note, we consider the maximum number of distinct non-empty palindromes that can exist in a (k,n)-starlike tree. We call this number $P(k,n)$ and prove that $P(k,n) \leq (1 + \binom{k}{2})n$. For $k = 3$ this gives $P(3,n) \leq 4n$, but for trees labelled
with a binary alphabet we sharpen this result to $P(3,n) \leq 4n - 1$. On the basis of computational evidence, we conjecture that for $k = 3$ the best possible bound is $4n - 2$. Trees attaining this bound are easily found, but mysteriously, it seems very difficult to prove.

2 Results

The following well-known result is due to Droubay, Justin, and Pirillo [2]. We give a proof since its ideas will be used later.

Lemma 1. The number of distinct non-empty palindromes in a word of length n is at most n.

Proof. If two palindromes end at the same place then the shorter is a suffix of the longer. It is therefore also a prefix of the longer and so has occurred earlier in the word. Thus at each position there is the end of at most one palindrome making its first appearance in the word. The lemma follows.

Of course it is also true that each position in a word can be the starting point of the last occurrence of at most one palindrome. Note that a position i that marks the end of the first appearance of a palindrome in $x[1..n]$ also marks the start of the last occurrence $j = n - i + 1$ of the same palindrome in $R(x)$.

Theorem 2. An edge-labelled starlike tree with branches b_1, b_2, \ldots, b_k, where $|b_1| \geq |b_2| \geq \cdots \geq |b_k|$, contains at most

$$|b_1| + \sum_{i=2}^{k} (i - 1)|b_i|$$

distinct non-empty palindromes.

Proof. We say that a palindrome within a branch b_i is local, while one that overlaps a path $R(b_i)b_j$, $j > i$, through the central vertex is overlapping.

The path $R(b_1)b_2$ contains $|b_1| + |b_2|$ edge labels and therefore, by Lemma 1, contains at most $|b_1| + |b_2|$ distinct palindromes. Now consider the path $R(b_1)b_3$. This contains at most $|b_1| + |b_3|$ distinct palindromes, with at most $|b_3|$ of their first appearances ending in b_3. Palindromes local to b_1 would have been counted in the path $R(b_1)b_2$. Thus, in addition to these palindromes, there are at most $|b_3|$ other palindromes in $R(b_1)b_3$, whether local or overlapping. Similarly, there are at most $|b_i|$ new palindromes in each path $R(b_1)b_i$ for $i = 4, 5, \ldots, k$. Thus the total number of new palindromes in paths $R(b_1)b_i$, $i = 2, 3, \ldots, k$, is at most $\sum_{i=1}^{k} |b_i|$.

Now consider the paths $R(b_2)b_i$ for $3 \leq i \leq k$. The set of palindromes in $R(b_2)$ is of course exactly the set of palindromes in b_2. These local palindromes fall into two types, as follows.
Type 1: Those palindromes counted in $b_{1,2} := R(b_1) b_2$ because their first occurrences were in $b_{1,2}$, thus not in $R(b_1)$. These will of course also occur in $R(b_2) b_i$, but will not be counted a second time.

Type 2: Those palindromes not counted in $b_{1,2}$. These palindromes must therefore not have their first occurrences in $R(b_1) b_2$, and so must have occurred (and been counted) previously. These palindromes will therefore not be counted a second time.

Thus in $R(b_2) b_i$ there will be no new palindromes local to b_2, only (local or overlapping) palindromes ending in b_i, of which there will be at most $\sum_{i=3}^{k} |b_i|$ altogether, by Lemma 1.

Considering now all the paths $R(b_i) b_j$, $i = 1, 2, \ldots, k - 1$, $j = i + 1, i + 2, \ldots, k$, we see that the maximum number of palindromes in all paths of the starlike tree is

$$\sum_{i=1}^{k} |b_i| + \sum_{i=2}^{k} |b_i| + \cdots + \sum_{i=k-1}^{k} |b_i| + |b_k|$$

$$= |b_1| + \sum_{i=2}^{k} (i - 1)|b_i|,$$

as required. \qed

Corollary 3.

$$P(k, n) \leq \left(1 + \binom{k}{2}\right) n.$$

Proof. Substitute n for each $|b_i|$ in the theorem. \qed

Table 1 (below) shows values of $P(k, n)$ for low values of k and n when we are restricted to a binary alphabet. We see that the upper bounds are far from sharp.

<table>
<thead>
<tr>
<th>n</th>
<th>$k = 3$</th>
<th>$k = 4$</th>
<th>$k = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3, 4</td>
<td>4, 7</td>
<td>4, 11</td>
</tr>
<tr>
<td>2</td>
<td>6, 8</td>
<td>8, 14</td>
<td>9, 22</td>
</tr>
<tr>
<td>3</td>
<td>10, 12</td>
<td>14, 21</td>
<td>16, 33</td>
</tr>
<tr>
<td>4</td>
<td>14, 16</td>
<td>20, 28</td>
<td>24, 44</td>
</tr>
<tr>
<td>5</td>
<td>18, 20</td>
<td>26, 35</td>
<td>32, 55</td>
</tr>
</tbody>
</table>

Table 1: Maximum number of palindromes in various starlike trees of fixed branch length. The first value in each cell is $P(k, n)$ and the second is the upper bound given by Corollary 3.

Using larger alphabets does not seem to increase the maxima except in the case of a starlike tree with five branches of length 1. With a binary alphabet we get at most four palindromes with branches labelled a, a, a, b, b; with a ternary alphabet we get five palindromes using a, a, b, b, c.
One might expect there to be an easy induction proof, but there is not. In the case of starlike trees with 3 branches of length n labelled by a binary alphabet, Corollary 3 gives an upper bound of $4n$. One might assume that by adding an extra letter to each branch you could only get at most 4 new palindromes, but this is not implied by our proof. If the three branches are labelled A, B and C, adding an extra letter to the A branch can give an extra palindrome in the AB branch and in the AC branch, so 2 more palindromes starting in the A branch. Also 2 more starting in each of the branches B and C, so up to 6 new palindromes (not 4) altogether.

We conjecture that, for all $n \geq 2$, $P(3,n) = 4n - 2$. This bound can be attained using branches labelled a^n, ba^{n-1} and bba^{n-2} (see Figure 1), but it seems very difficult to prove. One can make similar conjectures for larger k but in these cases there are many examples attaining the maxima, none of which look suitably canonical.

The following is a slight improvement on the bound for $P(3,n)$ when the alphabet is binary.

Theorem 4. The maximum number of distinct non-empty palindromes arising when a binary alphabet is used to edge-label a starlike tree with three length n branches is at most $4n - 1$.

Proof. Label the three branches x, y and z. Since our alphabet is binary, at least two of these have the same nth letter, say α. Without loss of generality, suppose $y[n] = z[n] = \alpha$. There are at most $2n$ palindromes in $R(x)y$ and at most n more distinct palindromes in $R(y)z$. We claim however that there are at most $n - 1$ new ones in $R(x)z$. For suppose that a palindrome in $R(x)z$ ends at $z[n]$. Then it must also occur in $R(x)y$ ending at $y[n]$, and so it has already been counted. Thus there are at most $4n - 1$ distinct palindromes in the starlike tree.

Similar results hold whenever paths in the tree share a common suffix.

References

(Received 31 May 2018; revised 9 Nov 2018)