Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Attraction of Brachyspira pilosicoli to mucin

Naresh, R. and Hampson, D.J.ORCID: 0000-0002-7729-0427 (2010) Attraction of Brachyspira pilosicoli to mucin. Microbiology, 156 (1). pp. 191-197.

PDF - Authors' Version
Download (177kB)
Free to read:
*No subscription required


The anaerobic intestinal spirochaete Brachyspira pilosicoli colonizes the large intestine of various species, including humans. In the colon this spirochaete can penetrate the overlying mucus layer, attach by one cell end to the underlying enterocytes, and initiate localized colitis and diarrhoea. The aim of this study was to investigate whether, as part of the colonization process, B. pilosicoli is attracted to mucin. Fifteen B. pilosicoli strains isolated from humans, pigs, chickens and dogs, and a control strain of Brachyspira hyodysenteriae, were analysed for their ability to enter solutions of hog gastric mucin in an in vitro capillary tube assay. No significant attraction was detected with 1% mucin, but some strains started to enter a 2% solution, and attraction then increased with increasing concentrations to peak at around 6-8% mucin. A similar increase was seen with B. hyodysenteriae, although this activity peaked at 6% mucin and then declined, suggesting that the two species have different affinities for mucin. These mucin concentrations were much higher than those used in previous experimental studies with Brachyspira species. The viscosities of the 6-8% mucin solutions were around 7-12 mPa s, which were similar to the measured viscosities of the mucus layer overlying the epithelium in the caecum and colon of experimental pigs. The strains varied in their motility, as assessed by their ability to enter tubes containing chemotaxis buffer, but there was no significant relationship between this motility and the extent of their ability to enter the mucin solutions. Different strains also had different propensities to enter the mucin solutions, but there were no consistent differences according to the host species of origin. B. pilosicoli strain 95/1000 was attracted towards a solution of Dserine, suggesting that chemotaxis was involved in the attraction to mucin; however, 95/1000 was also attracted to viscous solutions of polyvinylpyrrolidone (PVP), in a manner mirroring the response to mucin, and hence suggesting the involvement of viscotaxis in the attraction to mucin. B. hyodysenteriae B204 showed a similar viscotaxis to PVP. Further studies are required to determine whether the in vitro interaction of a given strain with mucin is a useful indicator of its in vivo colonization ability, and hence could be used as a potential marker for virulence.

Item Type: Journal Article
Murdoch Affiliation(s): Animal Research Institute
School of Veterinary and Biomedical Sciences
Publisher: Society for General Microbiology
Copyright: © 2010 SGM.
Item Control Page Item Control Page


Downloads per month over past year