Catalog Home Page

Genome-wide analysis of Borrelia turcica and ‘Candidatus Borrelia tachyglossi’ shows relapsing fever-like genomes with unique genomic links to Lyme disease Borrelia

Gofton, A.W., Margos, G., Fingerle, V., Hepner, S., Loh, S-M, Ryan, U.ORCID: 0000-0003-2710-9324, Irwin, P.ORCID: 0000-0002-0006-8262 and Oskam, C.L. (2018) Genome-wide analysis of Borrelia turcica and ‘Candidatus Borrelia tachyglossi’ shows relapsing fever-like genomes with unique genomic links to Lyme disease Borrelia. Infection, Genetics and Evolution, 66 . pp. 72-81.

Link to Published Version: https://doi.org/10.1016/j.meegid.2018.09.013
*Subscription may be required

Abstract

Borrelia are tick-borne bacteria that in humans are the aetiological agents of Lyme disease and relapsing fever. Here we present the first genomes of B. turcica and B. tachyglossi, members of a recently described and rapidly expanding Borrelia clade associated with reptile (B. turcica) or echidna (B. tachyglossi) hosts, transmitted by hard ticks, and of unknown pathogenicity. Borrelia tachyglossi and B. turcica genomes are similar to those of relapsing fever Borrelia species, containing a linear ~ 900 kb chromosome, a single long (> 70 kb) linear plasmid, and numerous short (< 40 kb) linear and circular plasmids, as well as a suite of housekeeping and macronutrient biosynthesis genes which are not found in Lyme disease Borrelia. Additionally, both B. tachyglossi and B. turcica contain paralogous vsp and vlp proteins homologous to those used in the multiphasic antigen-switching system used by relapsing fever Borrelia to evade vertebrate immune responses, although their number was greatly reduced compared to human-infectious species. However, B. tachyglossi and B. turcica chromosomes also contain numerous genes orthologous to Lyme disease Borrelia-specific genes, demonstrating a unique evolutionary, and potentially phenotypic link between these groups. Borrelia tachyglossi and B. turcica genomes also have unique genetic features, including degraded and deleted tRNA modification genes, and an expanded range of macronutrient salvage and biosynthesis genes compared to relapsing fever and Lyme disease Borrelia. These genomes and genomic comparisons provide an insight into the biology and evolutionary origin of these Borrelia, and provide a valuable resource for future work.

Item Type: Journal Article
Murdoch Affiliation: School of Veterinary and Life Sciences
Publisher: Elsevier B.V.
Copyright: © 2018 Elsevier B.V.
URI: http://researchrepository.murdoch.edu.au/id/eprint/42332
Item Control Page Item Control Page