Catalog Home Page

Forest die-off following global-change-type drought alters rhizosphere fungal communities

Hopkins, A.J.M., Ruthrof, K.X., Fontaine, J.B.ORCID: 0000-0002-6515-7864, Matusick, G., Dundas, S.J. and Hardy, G.E.St.J. (2018) Forest die-off following global-change-type drought alters rhizosphere fungal communities. Environmental Research Letters, 13 (9). 095006.

[img]
Preview
PDF - Published Version
Download (1MB) | Preview
Free to read: https://doi.org/10.1088/1748-9326/aadc19
*No subscription required

Abstract

Globally, forest die-off from global-change-type drought events (hotter droughts) are of increasing concern, with effects reported from every forested continent. While implications of global-change-type drought events have been explored for above-ground vegetation, below-ground organisms have received less attention, despite their essential contributions to plant growth, survival, and ecosystem function. We investigated rhizosphere fungal communities in soils beneath trees affected by a global-change-type drought in a Mediterranean climate-type ecosystem in southwestern Australia, quantifying how fungal richness, composition and functional groups varied along a drought impact gradient. Following a forest die-off three years previously, we collected soils beneath dead and alive trees within forest exhibiting high, minimal and relatively unaffected levels of forest die-off. Rhizosphere fungal DNA was extracted from soils, amplified and subjected to high throughput sequencing. Fungal community composition varied significantly (P < 0.001) along the drought impact gradient with less richness in drought affected stands. There was some evidence of community differentiation between dead versus alive trees (P = 0.09), and no difference in rarefied richness and diversity. When considered by functional group, die-off-impacted plots had more arbuscular mycorrhizal fungi (AM) and saprotrophs, and fewer ectomycorrhizal fungi (ECM), compared with living trees from the unaffected plots. Further, within die-off plots, dead versus alive tree rhizosphere samples contained more AM, saprotrophs and pathogens, and fewer ECM. Disruptions to rhizosphere fungal communities, such as altered functional groups, can have implications for ecosystem persistence and function, particularly in regions projected to experience increased global-change-type drought events.

Item Type: Journal Article
Murdoch Affiliation: School of Veterinary and Life Sciences
Publisher: IOP Publishing
Copyright: © 2018 IOP Publishing
United Nations SDGs: Goal 13: Climate Action
Goal 15: Life on Land
URI: http://researchrepository.murdoch.edu.au/id/eprint/42189
Item Control Page Item Control Page

Downloads

Downloads per month over past year