Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Hydrodesulfurization of Thiophene over γ-Mo2N catalyst

Jaf, Z.N., Altarawneh, M.ORCID: 0000-0002-2832-3886, Miran, H.A., Jiang, Z-T and Dlugogorski, B.Z. (2018) Hydrodesulfurization of Thiophene over γ-Mo2N catalyst. Molecular Catalysis, 459 . pp. 21-30.

Link to Published Version: https://doi.org/10.1016/j.mcat.2018.07.008
*Subscription may be required

Abstract

Catalytic removal of the S-content from thiophene is a central step in efforts aiming to reduce the environmental burdens of transportation fuels. In this contribution, we investigate the hydrodesulfurization (HDS) mechanisms of thiophene (C4H4S) over γ-Mo2N catalyst by means of density functional theory (DFT) calculations. The thiophene molecule preferentially adsorbs in a flat mode over 3-fold fcc nitrogen hollow sites. The HDS mechanism may potentially proceed either unimolecularly (direct desulfurization) or via H-assisted reactions (hydrogenation). Due to a sizable activation barrier required for the first CS bond scission of 54.6 kcal/mol, we predict that the direct desulfurization to contribute rather very insignificantly in the HDS mechanism. Transfer of adsorbed hydrogen atoms on the γ-Mo2N surface to the thiophene ring substantially reduces activation barrier required in the CS bond scission to only 24.1 kcal/mol in a process that affords an adsorbed C4H6* species and an S atom. Further hydrogenation of the unsaturated C4H6* produces 2-butene. Kinetics and thermodynamics attributes dictate the occurrence of partial rather than full hydrogenation of C4H6*. Calculated rate constants for all individual steps could be utilized to construct a robust kinetic model for the overall HDS process. Estimated conversion values of thiophene predict 50–70% consumption of thiophene at 700 K and low values of gas hourly space velocities. Reaction routes and kinetic parameters provided herein are useful to design stand-alone γ-Mo2N-based catalysts for applications entailing partial hydrogenation and hydrodesulfurization of severely contaminated S-fuels.

Item Type: Journal Article
Murdoch Affiliation: School of Engineering and Information Technology
Publisher: Elsevier
Copyright: © 2018 Elsevier B.V.
URI: http://researchrepository.murdoch.edu.au/id/eprint/41939
Item Control Page Item Control Page