Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Effect of water immersion temperature on heart rate variability following exercise in the heat

Choo, H.C., Nosaka, K., Peiffer, J.J.ORCID: 0000-0002-3331-1177, Ihsan, M., Yeo, C.C. and Abbiss, C.R. (2018) Effect of water immersion temperature on heart rate variability following exercise in the heat. Kinesiology, 50 (1). pp. 67-74.

PDF - Published Version
Download (916kB) | Preview
Free to read:
*No subscription required


This study compared the effect of passive rest (CON) and water immersion at 8.6±0.2°C (CWI9), 14.6±0.3°C (CWI15) and 35.0±0.4°C (thermoneutral water immersion [TWI]) on post-exercise heart rate variability (HRV) indices. In a climate chamber (32.8±0.4°C, 32±5% relative humidity), nine men completed 25 min of cycling at the first ventilatory threshold and repeated 30-second bouts at 90% of peak power followed by a 5-minute recovery treatment in a randomised crossover manner. All water immersion re-established the HRV indices (natural logarithm of the square root of the mean sum squared differences between RR intervals [ln rMSSD], low-frequency [lnLF] and high-frequency power densities [lnHF] and Poincaré plotderived measures [lnSD1 and lnSD2]) to the pre-exercise levels at 60 min post-immersion; however, only CWI9 accelerated parasympathetic reactivation during immersion. CWI9 increased lnLF and lnSD2 during immersion when compared with CON (p<.05). Although CWI9 had a large positive effect size (ES>0.80) on all HRV indices during immersion when compared with CON, between-conditions differences were observed only in lnLF and lnSD2 (p=.017-.023). CWI15 had a large positive ES on ln rMSSD and lnSD1 when compared with CON (both p=.064). Sympathovagal antagonism (i.e., SD ratio<0.15) did not occur during CWI9 and CWI15. Hence, both CWI treatments are effective means of enhancing post-exercise parasympathetic reactivation, but CWI9 is likely to be more effective at increasing post-exercise cardiac vagal tone.

Item Type: Journal Article
Murdoch Affiliation(s): School of Psychology and Exercise Science
Publisher: University of Zagreb
Copyright: © 2018, University of Zagreb - Faculty of Kinesiology
Item Control Page Item Control Page


Downloads per month over past year