Automatic inferential bias adjustment: Optimisation of an industrial application.

Contains Alcoa Confidential Information.

A report submitted to the School of Engineering and Information Technology, Murdoch University in partial fulfilment of the requirements for the degree of Bachelor of Engineering Honours in the disciplines of Instrumentation and Control Engineering/Industrial Computer Systems Engineering

Prepared by
Craig Maloney
2017
Declaration

I declare that this thesis has been conducted solely by myself and that it has not been submitted, in whole or in part, in any prior application for a degree at any tertiary education institution. Except where stated otherwise by reference or acknowledgement, the work presented is entirely my own.

Signed: ______________________

Name: Craig Warren Maloney

Date: ______________________

Word count of all parts of this report excluding references and appendices: 12,471
Abstract

Not all process variables can be directly measured, some require alternative measured variables together with their known relationship to enable a calculation of an inferred value of the required variable. As these inferred values rely on a fixed calculation a common practice in maintaining their accuracy is by continued automatic bias adjustment as a result of errors determined through laboratory analysis. The focus of the project was to determine the optimal method of bias adjustment of an industrial application of this process within an alumina refinery. Specifically, the critical digestion control variable the Blow Off Ratio (BOR).

The current method of using a cumulative summation (CUSUM) of the errors resulting from the laboratory analysis with a fixed trigger limit to initiate a bias correction was used as a reference enabling average error reductions to be determined by the simulated alternative methods. The standard CUSUM using a multiple of the process standard deviation to establish a dynamic trigger resulted in average error improvements across all five digestion units of the initial testing. Optimising both CUSUM trigger parameters (fixed and dynamic) resulted in minimal average error solution operating outside the definition of a CUSUM.

Simulation of a standard error filter \(bias_i = bias_{i-1} + K \cdot error_{i-1} \) as the bias adjustment method, even though not recommended, provided substantial improvements of 19.9% to 29.4% average error reduction across the tested units. The main cause of this significant result was found to be a dramatic cyclic drift of the inferred BOR. This resulted in the poor performance of the CUSUM as its intent is to detect small shifts.
Additional alternative bias adjustments simulated to maintain the improvements of the error filter and sustain the performance of the CUSUM during low levels of drift were the Fast Initial Response (FIR) CUSUM and the Shewhart/CUSUM combination. Of these two methods, the FIR CUSUM showed no improvement but while the Shewhart delivered isolated improvement, the optimal error filter delivered consistently better results across all units tested and differing yearly historical data.
Table of Contents

Declaration .. ii

Abstract ... iii

List of Figures ... vii

List of Tables ... ix

List of Equations .. xi

Acknowledgments .. xii

Acronyms .. xiii

Chapter 1: Introduction ... 1

1.1 Literature Review .. 2

1.1.1 Background ... 2

1.1.2 Steady State Identifier Research .. 4

1.1.3 Inferential Bias Correction Research ... 6

1.1.4 Aims and Objectives ... 9

Chapter 2: Methods and Simulation Design ... 11

2.1 Data Collection .. 11

2.2 Simulation ... 13

2.2.1 Common Code .. 13

2.2.2 Steady State Identifier ... 15

2.2.3 Current Method ... 16

2.2.4 Standard CUSUM ... 22

2.2.5 CUSUM Optimisation .. 24

Chapter 3: Initial Results .. 26

3.1 Steady State Identifier ... 26

3.2 CUSUM Comparison Analysis .. 29

Chapter 4: Standard Filter Simulation ... 33
Chapter 5: Standard Filter Results ... 34

Chapter 6: Alternative Statistical Filter Simulation .. 39
 6.1 Fast Initial Response CUSUM .. 39
 6.2 Shewhart and CUSUM Combination .. 40

Chapter 7: Final Results .. 41

Chapter 8: Discussion ... 47

Chapter 9: Conclusion ... 50

Chapter 10: References .. 51

Appendix ... 53
 A.1 Reference Documentation Links ... 53
 A.2 Simulation Code .. 54
 A2.1 Steady State Identification Simulation code ... 54
 A2.2 Current CUSUM Simulation code ... 58
 A2.3 Standard CUSUM Simulation code ... 62
 A2.4 Standard Error Filter Simulation code ... 66
 A2.5 FIR CUSUM Simulation code .. 70
 A2.6 Shewhart/CUSUM Simulation code .. 74
List of Figures

Figure 2: Data importation from excel MATLAB code... 14
Figure 3: Data simulation range selection MATLAB code. .. 15
Figure 4: R-statistic calculation MATLAB code. ... 16
Figure 5: Current CUSUM simulation summation and bias adjustment MATLAB code. 18
Figure 6: Test for laboratory MATLAB code... 19
Figure 7: Sample time and time stamp string comparison... 20
Figure 8: Simulation inner while loop error calculations.. 21
Figure 9: CUSUM simulation reset MATLAB code. ... 22
Figure 10: Simulation performance indicator calculation and display MATLAB code. 22
Figure 11: Standard CUSUM calculation MATLAB code.. 23
Figure 12: Optimal CUSUM fixed trigger MATLAB code.. 24
Figure 13: Optimal CUSUM dynamic trigger MATLAB code. .. 25
Figure 14: SSI comparison 11/02/2014 7:30 pm (Location 1, unit 1). 28
Figure 15: SSI comparison 21/02/2014 1:05am (Location 1, unit 1). 28
Figure 16: SSI comparison 01/09/2017 12:13 am (Location 1, unit 3). 29
Figure 17: Current CUSUM plot (Location 1, Unit 1). ... 30
Figure 18: Standard dynamic trigger CUSUM plot (Location 1, Unit 1). 30
Figure 19: Optimal dynamic trigger CUSUM plot (Location 1, Unit 1). 31
Figure 20: Current CUSUM and optimal error filter bias plot (Location 1, unit 1, days 50 to 150 of 2017). ... 35
Figure 21: Current CUSUM and optimal error filter bias plot (Location 1, unit 1, days 50 to 70 of 2017). .. 36
Figure 22: Current CUSUM and optimal error filter bias plot (Location 1, unit 1, days 50 to 60 of 2017). .. 37
Figure 23: Current CUSUM and optimal error filter bias plot (Location 1, unit 1, days 60 to 70 of 2017). .. 38
Figure 24: Shewhart/CUSUM control calculations MATLAB code. .. 40
Figure 25: Alternative bias adjustment plot (Location 1, unit 1, days 50 to 60 of 2017). 42
Figure 26: Alternative bias adjustment plot (Location 1, unit 1, days 60 to 70 of 2017). 43
Figure 27: Alternative bias adjustment plot (Location 1, unit 1, days 50 to 70 of 2017). 44
Figure 28: All three locations bias comparison (2017). ... 46
List of Tables

Table 1: Extracted data yearly ranges ... 13
Table 2: Current CUSUM limiting parameters for each digestion unit 17
Table 3: “TimeStamp” and “SampleTime” Excel format example 19
Table 4 Sample time and laboratory result data alignment example 21
Table 5: Tuned R-statistic parameter results Location 1 unit 1 (07/08/1017-04/09/2017). .. 26
Table 6: SSI comparison results during 2014 to 2017 (Location 1, unit 1) 27
Table 7: Current and Standard CUSUM bias adjustment average error results (Location 1, 2017) .. 30
Table 8: CUSUM Optimal parameter average error results (Location 1, 2017) 31
Table 9: CUSUM simulation percentage of average error reduction 32
Table 10: Standard error filter simulation average error results (Location 1, 2017) 34
Table 11: Standard error filter, percentage average error reduction results (Location 1, 2017) .. 35
Table 12: Current CUSUM and optimal error filter bias comparison (Location 1, unit 1, days 50 to 150 of 2017) .. 36
Table 13: Current CUSUM and optimal error filter bias comparison (Location 1, unit 1, days 50 to 70 of 2017) .. 37
Table 14: Current CUSUM and optimal error filter bias comparison (Location 1, unit 1, days 50 to 60 of 2017) .. 38
Table 15: Current CUSUM and optimal error filter bias comparison (Location 1, unit 1, days 60 to 70 of 2017) .. 38
Table 16: FIR CUSUM simulation average error results (Location 1, 2017) 41
Table 17: Alternative bias adjustment results (Location 1, unit 1, days 50 to 60 of 2017) .. 42
Table 18: Alternative bias adjustment results (Location 1, unit 1, days 60 to 70 of 2017) .. 43
Table 19: Alternative bias adjustment results (Location 1, unit 1, days 50 to 70 of 2017) .. 44
Table 20: Complete average error reduction results for all simulations (Location 1, 2017) .. 45
Table 21: Location 2 simulation results 2017... 45
Table 22: Location 3 simulation results 2017... 45
Table 23: Optimal error filter average error reduction results (all locations). 46
List of Equations

1-1 Digestion reaction .. 2
1-2 R-statistic firstorder filter ... 6
1-3 R-statistic variance 1 .. 6
1-4 R-statistic noise variance 1 ... 6
1-5 R-statistic variance 2 .. 6
1-6 R-statistic noise variance 2 ... 6
1-7 R-statistic ratio ... 6
1-8 Traditional bias adjustment ... 7
1-9 Standard error filter ... 7
1-10 Standard positive CUSUM ... 8
1-11 Standard negative CUSUM ... 8
1-12 Standard CUSUM upper control limit 8
1-13 Standard CUSUM lower control limit 8
1-14 \(\text{ARL}_0 \) Siemund’s approximation 8
1-15 \(\text{ARL}_1 \) Siemund’s approximation 8
1-16 CUSUM slope bias correction (standard form) 9
1-17 CUSUM slope bias correction \((n=4) \) 9
2-1 Current positive CUSUM code equation 18
2-2 Current negative CUSUM code equation 18
2-3 Standard positive CUSUM code equation 23
2-4 Standard negative CUSUM code equation 23
2-5 Standard CUSUM trigger code equation 23
Acknowledgments

Firstly, I would like to acknowledge both my academic and industrial supervisors during this project, Professor Parisa Arabzadeh Bahri and Mr Pieter Nel. Thank you, both for your guidance and motivation. Secondly, I thank Benjamin Mossop, Richard Yeates and Srikanth Jayakumar for taking the time to explain and show the process and equipment currently used. Also, thank you to Jan Hurst and Nikki Martindale for their professional insights. Finally, thank you to my wife Cathrine and three sons James, Conor and Blair for their continued support and understanding throughout the past four years.
Acronyms

AI/TC Alumina to total caustic ratio
ARL CUSUM Average Run Length
ARL₀ In control average run length
ARL₁ Out of control average run length
BOR Blow off ratio
CL Control Language
CUSUM Cumulative sum
FIR Fast Initial Response
LCL Lower control limit
PHD Process Historical Database
SPC Statistical process control
SS Steady state
SSI Steady state identifier
Type I errors False error
Type II errors Undetected error
TS Transient state
UCL Upper control limit
Chapter 1: Introduction

Measurement of process variables is required to enable control of any process within its designed parameters. The instrumentation used to measure these process variables provide only an estimation of the actual process value. These estimations are required to have a certain accuracy depending on the intent of their use within the control philosophy. Estimation accuracy is affected by many aspects including the type and quality of instrumentation as well as the physical installation of the instrument and associated equipment. Many of these inaccuracies result in permanent gross errors in the estimation which can be corrected via the control system through bias correction. These estimates also drift from the real value over time due to physical changes occurring to the instrumentation. These inaccuracies are reduced during periodic maintenance via calibration, cleaning or replacement of the instrument. These maintenance schedules are predominantly fixed and usually require the instrument to be taken offline. Consequently, this method of accuracy improvement by itself cannot ensure the constant accurate online estimation required for many critical process variables. If the accuracy of critical variables is allowed to drift too far between calibrations the effect can dramatically impact the profitability of the process and or result in unsafe process conditions. A conventional method used within the industry to ensure the required level of accuracy of critical variables is to compare the online measurement with high accuracy measurements obtained through periodic samples tested within a laboratory. This method enables soft calibration to be performed at a higher frequency within the control system without taking the instrument offline. The focus of this Thesis is an industrial application of this method within the alumina refining Bayer process. The use of data obtained from 12 operational digestion units across three locations provides the bases for determining a usable solution.
1.1 Literature Review

This literature review has been compiled to provide the reader with context into the project background and to introduce the basis of methods used in this paper. It is intended to provide an understanding into the necessity to conduct this project and the theoretical content of this paper.

1.1.1 Background

1.1.1.1 Bayer Process

In 1888 the patent “A Process for the Production of Aluminum Hydroxide” was issued to Kar Josef Bayer an Austrian chemist residing in Russia [1]. Now known as the Bayer Process its methods produce crystalline aluminium hydroxide precipitated from an alkaline solution. This crystalline form is less complicated to clean compared to the gelatinous form produced from acidic solutions previously used. This advancement resulted in its widespread commercial adoption following the commissioning of the first plant in 1893 [2]. The Bayer process comprises three main stages, extraction, precipitation and calcination. The first stage of the process extraction includes grinding of the raw bauxite ore. Typical bauxites mined for alumina processing include alumina trihydrate, boehmite and diaspore predominate. Bauxite ore mined in the darling ranges of Western Australian contains alumina trihydrate commonly referred to as Gibbsite [3], compounds contained within this ore are iron oxide, quarts clay minerals and titanium oxide. Separation of the Gibbsite from these compounds is established by dissolving the bauxite in a hot caustic soda solution. Termed digestion the resulting reaction (Equation 1-1) produces sodium aluminate and water. This sodium aluminate slurry referred to as Blow off liquor is then passed through a series of filtration and separation units to remove the solid compounds as waste.

\[
\text{Equation 1-1} \\
\text{Al}_2\text{O}_3 3\text{H}_2\text{O} + 2\text{NaOH} \rightarrow 2\text{NaAlO}_2 + 4\text{H}_2\text{O} [1]
\]
With the solids removed the sodium aluminate solution, termed green liquor, is passed to the precipitation stage of the process. Precipitation is the crystallisation of the alumina from the green liquor as it cools. This cooling occurs as the green liquor is passed through a series of tanks while being agitated continuously. Small seed crystals are added to the first tank to initiate this precipitation. As the crystals are formed, they precipitate to the lower of these tanks where they are pumped to the final stage of the process, calcination. Prior to calcination, the alumina hydrate slurry is washed of any residual caustic and dried. The remaining hydrate is heated above 1000°C during calcination to cook off the chemically bound hydrogen resulting in the final product of the Bayer process; alumina [2].

1.1.1.2 Digestion Control

One of the primary variables that determine the alumina yield of the Bayer process is the alumina/caustic ratio (Al/TC) within the digestion process. Factors affecting the dissolution of gibbsite in the caustic soda solution are temperature, holding time and caustic soda concentrations [2]. Maximising alumina yield requires the Al/TC ratio exiting digestion after being depressurised, termed the blow off ratio (BOR), to be controlled as high as possible. If the BOR is set too low, production targets will not be meet inversely setting of the BOR setpoint too high will not only reduce the extraction rate due to decreased driving force but also results in the instability of the blow off liquor. As unstable blow off liquor is passed through the filtration circuit, it cools resulting in auto precipitation. This formation of alumina hydrate solids before the precipitation tanks not only reduces the final yield as it is discharged with the process residue but also results in fouling of process equipment.

Bauxite and caustic feed to the digester units are varied to maintain the BOR setpoint and ensure production rates are met. Due to the narrow operating range of the BOR to ensure production rates are met, and auto precipitation is prevented, the accuracy of the BOR measurement feedback to the controller is essential.
1.1.1.3 Blow Off Ratio Measurement

Without online measurement of the BOR, the digester bauxite and caustic feed rates are fixed. Fixing these process feeds require regular samples to be analysed by the laboratory with the results determining required changes of these feed rates. This method results in unknown BOR values between laboratory sampling, resulting in reduced performance due to unpredicted disturbances. Advancements in BOR control have been enabled by the development of electrodeless meters used to measure the digester process conductivity, as it has been established that electrical conductivity is a linear function of the liquor ratio [1]. Installing conductivity meters to side streams taken from the digestion process results in online feedback to the controller being established. While this provides the benefits of online control, other process factors affect the conductivity cell resulting in a shift of the linear function. This shift if not identified results in the BOR control at an incorrect value. Periodic laboratory analysis results can be compared with the online measurement to identify this shift. Once identified, manual adjustment of the cell can be performed to rectify the measurement. This adjustment may require the cell to be taken offline resulting in loss of continuous control or process downtime. An online soft calibration can be performed by incorporation of this online conductivity measurement with periodic laboratory results within the control system. Resultantly improving the accuracy of the online measurement and reducing the frequency of instrument calibrations. The optimisation a method of soft calibration for an inferred BOR within an industrial Bayer process is the focus of this paper.

1.1.2 Steady State Identifier Research

Identification of a steady state (SS) is required for many functions within the process control field including but not limited to fault detection, model identification, sensor analysis and optimisation [4]. Steady-state identification (SSI), in this case, tests the online process for stability at the time a
laboratory sample is registered ensuring ideal conditions for a comparison of the two values. Many methods are proposed within literature with varying similarities. The direct approach incorporates obtaining a linear approximation of the process data over a given data set. Testing the slope of this approximation can determine a steady state with a value near to zero. This method while intuitive to understand requires considerable computation and relies on experience to determine an appropriate data set for the intended process [5]. Additionally, a turning point in the process could result in a type II error (undetected instability) as the slope will also register close to zero. The method used by Kim [6] as well as proposed by Jubien and Bihary [7] uses a data set to calculate the standard deviation at the time of the sample. During SS the standard deviation will be an indication of the inherent noise of the inferred value, although during a transient state (TS) the standard deviation will increase. This method will successfully differentiate between SS and TS with correctly set dataset range and limiting parameters. The limiting parameter is determined via establishing the variance due to noise from data during a known process steady state. Therefore, a change in this noise-induced process variance requires the parameter to be altered to maintain SSI performance. A differing method used by Vasyutynskyy [8] calculates a ratio of two sequential data set means. Resulting in a ratio value tending to one during SS, as a TS would lead to a difference in the sequential mean values tending the ratio further from unity. This method also uses the standard deviation of each data set as a scaling factor alleviating the issue of having to adjust the limiting factor of the current approach due to process variance changes. However, as with the direct approach, the means prior and post a turning point could result in identical means again leading to type II errors. An alternative method, the R-statistic, also rectifying the issue of changes in process variances is presented by Cao and Rhinehart [4]. The principle operation of this technique calculates the ratio of two variances attained through differing methods. This first variance $s_{1,i}^2$ is computed by the difference between the real data and a filtered value of the real data (Equation 1-2, Equation 1-3 and Equation 1-4) [4]. In practice, this difference will be minimal during a SS and increase throughout a TS due to the lagging nature of the filtered value. The second variance $s_{2,i}^2$ represents the difference between sequential real data values.
The value obtained from the ratio R_i in Equation 1-7 of these two variances will tend toward unity during a SS. Again, due to the inherent lag of the filtered data, the ratio term will increase during a TS proportional to the transient. Comparison of this ratio with a determining parameter will indicate when the variable is at SS or TS.

\begin{align*}
x_{f,i} &= \lambda_1 x_i + (1 - \lambda_1) x_{f,i-1} \quad \text{[4]} \\
v_{f,i}^2 &= \lambda_2 (x_i - x_{f,i-1})^2 + (1 - \lambda_2) v_{f,i-1}^2 \quad \text{[4]} \\
s_{1,i}^2 &= \frac{2(1 - \lambda_1)}{1} v_{f,i}^2 \quad \text{[4]} \\
\delta_{f,i}^2 &= \lambda_3 (x_i - x_{i-1})^2 + (1 - \lambda_3) \delta_{f,i-1}^2 \quad \text{[4]} \\
s_{2,i}^2 &= \frac{\delta_{f,i}^2}{2} \quad \text{[4]} \\
R_i &= \frac{s_{1,i}^2}{s_{2,i}^2} = \frac{(2 - \lambda_1)}{\delta_{f,i}^2} \quad \text{[4]}
\end{align*}

1.1.3 Inferential Bias Correction Research

Comparison of a steady state process value with laboratory analysis results can identify if the process online inferred value has drifted from the actual value. This detected shift can then be corrected by adjusting a bias value added to the inferential to reduce the calculated error. The traditional method of calculating the bias by adding the previous bias with the obtained error (Equation 1-8) would, in theory, remove 100% of the error. However, in the event of random errors during sampling and laboratory analysis, additional random errors would be introduced to the inferred value [9]. These incorrect adjustments would have flow-on effects in the process and depending on their magnitude could result in production loss and or unsafe conditions. A common practice to reduce the effect of random errors is the inclusion of an error filter term K (Equation 1-9), resulting in only a selectable portion of the error being used to adjust the bias. Error filtering will only reduce random errors, therefore, to increase confidence in a required bias adjustment a method to establish the occurrence of continued drift over a number of sampling periods would be required.
A conventional method to monitor a measured process variable in relation to the desired value is statistical process control (SPC). Control charts, one of the primary tools used in SPC, comprises of an upper and lower control limit (UCL and LCL respectively). Data exceeding these limits trigger notification the monitored variable parameter has reached an unacceptable deviation from its desired value. Different control charts are used to monitor the mean and variance of a measured variable, due to the issues concerning the inferred error from the real value, SPC control methods for monitoring the mean are of great interest. Shewhart control charts developed by Walter A. Shewhart in 1920 [11] are commonly used for online SPC. The \bar{X} control chart monitors a variable’s mean of a data set while setting the upper and lower control limits at a multiple of σ (monitored variables standard deviation), usually 3σ. Due to the periodic sampling period used in the BOR soft calibration, a variation of this Shewhart control chart designed for individual measurements would be more appropriate. The concern with this type of control chart is its insensitivity to small shifts in the process mean [11]. An alternative control chart used to monitor the mean of a process is the cumulative sum (CUSUM) control chart and is commonly used for laboratory updating of inferential parameters. CUSUM charts are used to detect small and persistent shifts in a process mean and are predominantly used with individual observation data [12]. The Tabular CUSUM (Equation 1-10 and Equation 1-11) includes two sides one accumulating positive C_i^+ and the other negative C_i^- deviations from a reference μ_0 (variable setpoint). The parameter K (slack value) is often selected to be half the difference between the reference and the magnitude of shift in the process variable x_i that is required to be promptly detected. Other parameters required to be set are the UCL and LCL. A proven value for these limits is 5 times the process standard deviation σ (Equation 1-12 and Equation 1-13) and symbolised by H [11].

\[
\text{bias}_i = \text{bias}_{i-1} + \text{error}_{i-1} \quad \text{[10]}
\]

\[
\text{bias}_i = \text{bias}_{i-1} + K.\text{error}_{i-1} \quad \text{[10]}
\]
\[C_i^+ = \max[0, x_i - (\mu_0 + K) + C_{i-1}^+] \] \hspace{1cm} \text{Equation 1-10} \\
\[C_i^- = \max[0, (\mu_0 - K) - x_i + C_{i-1}^-] \] \hspace{1cm} \text{Equation 1-11} \\
\[UCL = H = h\sigma \] \hspace{1cm} \text{Equation 1-12} \\
\[LCL = -H = -h\sigma \] \hspace{1cm} \text{Equation 1-13} \\

The values of both parameters affect the time between type I (false alarm) errors during stable control, referred to as the in control average run length (ARL\(_0\)) in SPC. A small ARL\(_0\) will result in tighter control and increased type I errors. Inversely higher values of an ARL\(_0\) will result in type II errors. With high sampling frequencies, a higher ARL\(_0\) is ideal as frequent false triggers would affect the process. Increased time between samples would require a lower ARL\(_0\) to ensure shifts of the inferential are corrected within an acceptable time. When designing a CUSUM, an important aspect is the out of control average run length ARL\(_1\). This value is the number of summation reiterations required to trigger a specific magnitude of shift. In the intended context an ARL\(_1\) would be the number of samples required to trigger a bias adjustment in the event of an inferred shift. Both ARL values can be calculated with Siegmund’s approximation (Equation 1-14 and Equation 1-15) with parameters \(k\), \(h\) and \(\delta\) where \(k = \frac{K}{\sigma}\) and \(\delta\) is the shift in units of \(\sigma\). Using these approximations, it is possible to calculate the required control limits for a CUSUM to trigger with an acceptable ARL\(_1\) for a given shift.

\[ARL_0 \approx \exp\left[2k(h+1.166)\right] - \frac{2k(h+1.166) - 1}{2k^2} \] \hspace{1cm} \text{Equation 1-14} \\
\[ARL_1 \approx \exp\left[2(\delta-k)(h+1.166)\right] - \frac{2(\delta-k)(h+1.166) - 1}{2(\delta-k)^2} \] \hspace{1cm} \text{Equation 1-15} \\

When the designed CUSUM has identified an unacceptable inferential shift and triggered, an adjustment is made to the bias to correct the inferential error. The simplest method to determine the required adjustment uses an average of the errors obtained during the summation leading to the
trigger. An alternative approach is to use the slope of the CUSUM to determine the magnitude of the correction required. For this approach the derived bias correction Equation 1-16 requires selection of the number of previous measurements \(n \) to determine the CUSUM slope. A combination of the CUSUM slope and error filter is an additional option in calculating the bias adjustment [10], as an example when \(n = 4 \) Equation 1-17 indicates the bias adjustment. Once the bias is adjusted the CUSUM is reset so both \(C_i^+ \) and \(C_i^- \) are set to zero.

\[
\text{bias}_{n+1} = \text{bias}_n - \frac{6}{n(n+1)(n+2)} \sum_{i=1}^{n} i(n - i + 1) \text{error}_{n-i+1} [10] \quad \text{Equation 1-16}
\]
\[
\text{bias}_{n+1} = \text{bias}_n - K \left(\frac{2\text{error}_n + 3\text{error}_{n-1} + 3\text{error}_{n-2} + 2\text{error}_{n-4}}{10} \right) [10] \quad \text{Equation 1-17}
\]

1.1.4 Aims and Objectives

The overarching aim of this Thesis is to establish an optimal method of automatic bias adjustment of the inferred BOR of a number of physical Bayer processess. Two main objectives have been identified to enable measurable improvement of the current method. Firstly, a robust method of determining the process is at steady state ensuring reliable comparison between the online and periodic measurements. The R-statistic alternative to the current standard deviation method of SSI represented by Equation 1-2 to Equation 1-7 will be tested and analysed. This analysis will provide a gauge to the suitability of this approach for the intended application. Secondly, optimisation of the method used in identifying and assessing online measurement shift enabling an accurate bias adjustment. This second objective will be the key focus of this Thesis. Simulation of the current method with historical data obtained from a number of refineries and digestion units will be compared with the identified alternatives and modifications including:

1. Dynamic control limits as a function of standard deviation (Equation 1-12 and Equation 1-13).
2. The standard CUSUM with slack parameter K (Equation 1-10 and Equation 1-11).
3. The traditional filtering method (Equation 1-9).
Performance of the various methods will be measured by the average error between the inferred BOR and an accepted laboratory result. Additional measures of the differing CUSUMs will be used such as the average run length between bias updates providing a performance gauge of their balance between type I and type II errors.
Chapter 2: Methods and Simulation Design

Identification of the optimal method of BOR bias adjustment requires data from each method to be analysed for evaluation. Implementation of each alternative method cannot be initiated online as the resulting disturbance to the process would be unpredictable and present unacceptable financial risk to the company. Therefore, simulation of various BOR bias adjustment methods requires an offline program so that production is not affected. The use of MATLAB as the programming platform for the simulations was adopted as it provided the necessary functions for each simulation. Additional software is also necessary to enable the extraction of historical data from the systems Process Historical Database (PHD) and to enable graphical analysis of the results. A complete list of the required software is as follows:

- Mathworks, MATLAB, revision r2014a minimum. – The platform used for the simulation algorithm code.
- Honeywell, DOC4000. – Provides access to the control language code of the control system.
- Honeywell, Uniformance Process Studio. – Enables identification of the complete tags required for extraction of data from the PHD and initial analysis of raw data.
- Honeywell, Uniformance Excel companion. – Enables Microsoft Excel to extract data from the PHD.
- Microsoft, Excel. – Data extraction from PHD and MATLAB.

2.1 Data Collection

To determine the consistency of a simulation methods performance results are required from differing data sets from several digestion units. Data from twelve digestion units across three locations were obtained. Five units from location 1 and location 2 as well as two units from location 3. Each
simulation requires historical process data to ensure they are suited to the measured process dynamics. The historical data sets required for each unit of each location from the PHD is as follows:

- **Time stamp** – Control system data point time stamp.
- **BOR** – The bias-corrected inferential of the Blow Off Ratio.
- **Bias** – Bias magnitude calculated via the current adjustment algorithm.
- **Standard deviation** – Calculated standard deviation of process variable dataset at time of laboratory sample.
- **BOR Average** – Calculated BOR average of process variable dataset at time of laboratory sample.
- **Error** – BOR error determined via current control system.
- **Laboratory sample** – BOR value obtained through laboratory analysis.
- **Sample time** – Documented time of manual sample for BOR laboratory analysis.

Identification of the correct system tags for each of the historical data sets requires the control language (CL) code accessed through Honeywell’s DOC4000 portal. The CL code enables the required package input and output variables to be identified. Once the identifier for each I/O data set has been obtained through the DOC4000 portal, each complete system tag is obtained via a search in Uniformance Process Studio. Extraction of the historical data requires Microsoft excel with the Uniformance Excel Companion add-in, and the established complete tags (links to user and help guides for the required software are included in Appendix A.1. Excel workbooks created for each location with worksheets for each unit provide ease of data extraction via MATLAB using the “xlsread” function. With the use of Uniformance Excel companion import snapshot data to excel from the Process Historical Database (PHD). Each snapshot data set is to have data points with an interval of one minute and contain data from a four-week duration (instructions for excel data extraction can be found in the Uniformance Excel Companion Users Guide in Appendix A.1). The reasoning for extracting only four weeks of data is due to a maximum number of data points that can be extracted
by this method. Data from each four-week workbook are manually combined to create workbooks containing yearly data. The range of each locations yearly data spreadsheet is indicated in Table 1.

Table 1: Extracted data yearly ranges.

<table>
<thead>
<tr>
<th>Location</th>
<th>Year</th>
<th>Start date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location 1</td>
<td>2017</td>
<td>23/01/2017</td>
<td>02/10/2017</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>25/01/2016</td>
<td>23/01/2017</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>03/01/2015</td>
<td>25/01/2016</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>04/01/2014</td>
<td>03/01/2015</td>
</tr>
<tr>
<td>Location 2</td>
<td>2017</td>
<td>16/01/2017</td>
<td>23/10/2017</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>18/01/2016</td>
<td>16/01/2017</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>19/01/2015</td>
<td>18/01/2016</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>20/01/2014</td>
<td>10/01/2015</td>
</tr>
<tr>
<td>Location 3</td>
<td>2017</td>
<td>06/01/2017</td>
<td>13/10/2017</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>08/01/2016</td>
<td>06/01/2017</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>09/01/2015</td>
<td>08/01/2016</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>08/01/2014</td>
<td>09/01/2015</td>
</tr>
</tbody>
</table>

2.2 Simulation

All simulations share common code enabling importation and selection of data required for the tests being performed. Additionally, each differing test requires custom code designed to enable accurate simulation of the specific test. Examples and explanation of the code used throughout this project are provided throughout this section to assist any reproduction of the obtained results. Appendix A.2 contains the complete code of all simulation and analysis programmes.

2.2.1 Common Code

Each simulation requires importation of historical data from the Excel files containing the yearly data as indicated in Table 1. This is enabled with the use of the MATLAB “xlsread” function requiring the filename, sheet name and data cell range of the Excel spreadsheet containing the required data. The example code shown in (Figure 1) imports the required data from location 1, unit 1 for the year of 2017. Note the “filename”, “sheet” and the data cell ranges (“###_xlRange”) require manual entry.
This manual entry allows a single program to be manipulated to extract data from the required excel spreadsheet. Due to the custom data type of the time-stamp and laboratory-time extracted from the PHD, these date and time strings are required to be extracted from the cell data as shown on lines 18 and 19 of Figure 1.

```matlab
2 %Import data from excel
3 filename='LOC1_BOR_2017.xlsx';
4 sheet='U1 BOR';
5 BORData_x1Range='B3:B362883';
6 BiasData_x1Range='D3:D362883';
7 StdData_x1Range='J3:J362883';
8 ErrorData_x1Range='I3:I362883';
9 LabData_x1Range='F3:F362883';
10 TimeStamp_x1Range='A3:A362883';
11 SampleTime_x1Range='E3:E362883';
12
13 BORData = xlsread(filename, sheet, BORData_x1Range);
14 BiasData = xlsread(filename, sheet, BiasData_x1Range);
15 StdData = xlsread(filename, sheet, StdData_x1Range);
16 ErrorData = xlsread(filename, sheet, ErrorData_x1Range);
17 LabData = xlsread(filename, sheet, LabData_x1Range);
18 [num, text, TimeStamp] = xlsread(filename, sheet, TimeStamp_x1Range);
19 [num2, text2, SampleTime] = xlsread(filename, sheet, SampleTime_x1Range);
```

Figure 1: Data importation from excel MATLAB code.

Additional common code allowing only a selected range of the imported data to be analysed by the method being tested is shown in (Figure 2). This additional code allows sections of data obtained during unit shut down to be disregarded from the simulation test. Subarrays are created by adjusting the “subtime” and “subsize” variables for the required data range. The “subtime” variable selects the midpoint of the required data set, and the “subsize” variable identifies the range of data either side of the midpoint. For example, by commenting out lines 26 and 27 with “%” then uncommenting out lines 28 and 29 by removing the “%” from each line of the code in Figure 2, each sub-array will have a range of 144000 data points from index 72000 to 216000 of the original imported data array.
2.2.2 Steady State Identifier

Simulation of the current SSI being a limiting factor of the inferential data set standard deviation was simply achieved with the MATLAB “std’ function. The R-statistic simulation requires Equation 1-2 to Equation 1-7 to be implemented in the simulation code enabling the ratio of the two variances to be calculated. The recommended filtering term values of $\lambda_1 = 0.2$, $\lambda_2 = 0.1$ and $\lambda_3 = 0.1$ [4] were used in the simulations to provide a balance of type I and type II errors. The code for the R-statistic calculations is displayed in Figure 3 where “subRawData” is the BOR value obtained from the PHD.

During the simulation some indicators are established to assist in the analysis of the SSI methods and are listed as follows:

- Laboratory sample count – this is the total number of laboratory sample results entered into the PHD for the time period tested.

- Current SSI acceptance count – this is the number of the tests the current SSI resulted in a SS (total number of tests is equal to the laboratory sample count).

- R-statistic acceptance count - this is the number of the tests the R-statistic SSI resulted in a SS (total number of tests is equal to the laboratory sample count).

`Figure 2: Data simulation range selection MATLAB code.`

```matlab
%Create sub data arrays to target data of interest
Dsize=size(BORData);
Dsize=Dsize(1,1);
subtime=Dsize/2;
subsize=subtime-2;

% subtime=14400; % subsize=72000;
subBORData=BORData(subtime-subsize:subtime+subsize,1);
subBiasData=BiasData(subtime-subsize:subtime+subsize,1);
subStdData=StdData(subtime-subsize:subtime+subsize,1);
subErrorData=ErrorData(subtime-subsize:subtime+subsize,1);
subLabData=LabData(subtime-subsize:subtime+subsize,1);
subTimeStamp=TimeStamp(subtime-subsize:subtime+subsize,1);
subSampleTime=SampleTime(subtime-subsize:subtime+subsize,1);
```
2.2.3 Current Method

Simulation of the current CUSUM method enables a reference to compare results of differing CUSUM’s and alternative methods. Simulation within the same platform (MATLAB) ensures the results are not affected by factors such as manual bias changes that are performed for various reasons. Parameters required to simulate the current BOR bias correction method are as follows:

- `trig_val` – the constant trigger value of the CUSUM initiating a bias adjustment.
- `sd_lo` – the minimum standard deviation of the BOR dataset (current process SSI low limit).
- `sd_hi` – the maximum standard deviation of the BOR dataset (current process SSI high limit).
- `lab_lo` – the minimum laboratory analysis result (laboratory analysis random error outlier identifier low limit).
- `lab_hi` – the maximum laboratory analysis result (laboratory analysis random error outlier identifier high limit).
- `max_err` – the maximum error that is used for calculations (additional random error outlier limiter).
- `max_adj` – the maximum bias adjustment value (minimises the effect of any random errors not identified).
- `x_val` – the BOR data set range determinator (i.e. `x_val`=10 results in a data set range of 20 minutes, 10 minutes either side of the sample time).

Figure 3: R-statistic calculation MATLAB code.
The parameter values obtained for each unit via the DOC4000 portal of each location are contained in Table 2. In addition to the current CUSUM simulation, these values are to be used in all other simulations to ensure consistency with exception to the “trig_val” which is altered in the process of optimisation.

Table 2: Current CUSUM limiting parameters for each digestion unit.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Location 1</th>
<th>Location 2</th>
<th>Location 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit 1</td>
<td>Unit 2</td>
<td>Unit 3</td>
</tr>
<tr>
<td>trig_val</td>
<td>0.014</td>
<td>0.012</td>
<td>0.014</td>
</tr>
<tr>
<td>sd_hi</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>sd_lo</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lab_hi</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>lab_lo</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>max_err</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
</tr>
<tr>
<td>max_adj</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>x_val</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

As the current CUSUM within the control system determines the bias term of the BOR inferential array (“subRawData”) of the raw inferred BOR historical data is obtained by subtracting the bias data array “subBiasData” from the BOR data array “subBORData". The simulated bias corrected BOR “SimBOR" is then established by adding the calculated bias obtained from the simulation “SimBias" to this raw BOR. This simulated BOR together with the imported laboratory analysis results enables an error value (“SimErr") to be calculated. This method assumes 100% accuracy of the laboratory results when in practice gross and random errors occur. This assumption is made as the parameters contained in Table 2 have been established to remove the significant outliers from the CUSUM calculations.

A form of CUSUM without the slack parameter of Equation 1-10 and Equation 1-11 is the statistical filter currently implemented, where \(\mu_p \) and \(x_i \) are the laboratory result and, determined process mean value respectively. Resultantly, the positive and negative CUSUM summations as are calculated with Equation 2-1 and Equation 2-2 respectively. When the limiting parameters are meet an “if” function permits these calculations within the simulation code as indicated on lines 151 and 152 of Figure 4.
The permitted errors are summed (“SimErrSum”) and counted (“SimErrCnt”) to enable an average error of the simulated CUSUM to be derived and used as the primary performance indicator.

\[
\text{pos}_i = \max[0, \text{pos}_{i-1} + (\mu_0 - x_i)] \\
\text{neg}_i = \min[0, \text{neg}_{i-1} + (\mu_0 - x_i)]
\]

Equation 2-1

Equation 2-2

Once either of the summation (“pos_sum” or “neg_sum”) values exceed the set trigger limit, a new bias adjustment calculation is initiated. This new bias adjustment (“Sim_n_adj”) as shown in lines 162 and 166 of Figure 4 is an average of the errors since the last adjustment. Similar to the determination of the simulation average error a simulation average run length is obtained by establishing a trigger count (“SimTrigCnt”) and ARL sum (“ARLsum”) during bias adjustments.

```
% CUSUM calculation if parameters are within limits
if abs(SimErr)<max_err&&SimS<sd_hi&&SimS<sd_lo&&...
subLabData(i)<lab_hi&&subLabData(i)>lab_lo&subLabData(i+1)==subLabData(i+3)
    Sim_pos_sum(i)=max(0,Sim_pos_sum(i-1)+SimErr);
    Sim_neg_sum(i)=min(0,Sim_neg_sum(i-1)+SimErr);
    SimErrSum=SimErrSum+abs(SimErr);
    SimErrCnt=SimErrCnt+1;
else
    Sim_pos_sum(i)=Sim_pos_sum(i-1);
    Sim_neg_sum(i)=Sim_neg_sum(i-1);
end

% Bias adjustment calculation
if Sim_pos_sum(i-1)>CURRENT_trig_val(1)
    Sim_n_adj=Sim_pos_sum(i)/(Sim_pos_cnt+1);
    SimTrigCnt=SimTrigCnt+1;
    ARLsum=ARLsum+Sim_pos_cnt;
else if Sim_neg_sum(i-1)<(-1)*CURRENT_trig_val(1)
    Sim_n_adj=Sim_neg_sum(i)/(Sim_neg_cnt+1);
    SimTrigCnt=SimTrigCnt+1;
    ARLsum=ARLsum+Sim_neg_cnt;
else
    Sim_n_adj=0;
end
```

Figure 4: Current CUSUM simulation summation and bias adjustment MATLAB code.

A sample of the “TimeStamp” and “SampleTime” data extracted from the PHD within an Excel spreadsheet can be seen in Table 3. This example shows the time required to analyse and enter the sample results into the control system was 54 minutes. To enable the laboratory sample results to be compared with the average of the inferred BOR value at the time the sample was extracted from the process cascaded while loops are required within the Matlab code. The cascaded loops enabled the simulation to identify the element of the online array data sets (the i-54 element in the example
shown in Table 3) that corresponds to the data within the laboratory analysis array data set (the I element in the example shown in Table 3). This is achieved by the outer loop indexing through the array elements performing the main calculations for the bias and BOR values. Meanwhile, during this indexing, the concurrent “SampleTime” array elements are compared as shown on line 108 of Figure 5. The “strcmp” (string comparison) MATLAB function indicates when a new laboratory sample value has been entered into the control system.

Table 3: "TimeStamp" and "SampleTime" Excel format example.

<table>
<thead>
<tr>
<th>Index</th>
<th>Timestamp</th>
<th>Sample time</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-55</td>
<td>23/01/2017 0:17</td>
<td>22/01/2017 19:53</td>
</tr>
<tr>
<td>i-54</td>
<td>23/01/2017 0:18</td>
<td>22/01/2017 19:53</td>
</tr>
<tr>
<td>i-53</td>
<td>23/01/2017 0:19</td>
<td>22/01/2017 19:53</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>i-1</td>
<td>23/01/2017 1:11</td>
<td>22/01/2017 19:53</td>
</tr>
<tr>
<td>i</td>
<td>23/01/2017 1:12</td>
<td>23/01/2017 0:18</td>
</tr>
<tr>
<td>i+1</td>
<td>23/01/2017 1:13</td>
<td>23/01/2017 0:18</td>
</tr>
</tbody>
</table>

Figure 5: Test for laboratory MATLAB code.

Due to the PHD data importation into Excel, all the time stamp data strings have zero seconds within the time section. However, the sample times are recorded to the nearest second as indicated in Figure 6. Therefore, to allow direct comparison of these strings once a new sample has been identified a new “TempTime” string is established with the code indicated on lines 110 to 114 of
Figure 5. Therefore, allowing determination of the BOR data to the nearest minute. *Note: simpler code can be established if using newer MATLAB revisions as advanced functions have been made available.* This “TempTime” contains the date and time of the current “subSampleTime” element with the seconds set to zero.

<table>
<thead>
<tr>
<th>Sample time(i)</th>
<th>23/01/2017 12:18:53 AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timestamp(i-54)</td>
<td>23/01/2017 12:18:00 AM</td>
</tr>
</tbody>
</table>

Figure 6: Sample time and time stamp string comparison.

To establish the error of the inferred BOR at the time of the sample extraction an inner while loop indexes from the beginning of the data strings comparing the “TempTime” and “subTime Stamp”. This enables the data set of the simulated BOR required to be obtained at the time the laboratory sample was taken. The process average and standard deviation of the obtained dataset are calculated with the “mean and “std” MATLAB functions respectively. The error calculation as indicated on line 133 of Figure 7 uses the laboratory result value two array elements post the current index. This allows for the inconsistent data importation into the control system at the time of laboratory result entry. An example of this is illustrated in Table 4 where the new BOR laboratory result “B” is contained an array element after the new sample time was indicated.
Figure 7: Simulation inner while loop error calculations.

Table 4 Sample time and laboratory result data alignment example.

<table>
<thead>
<tr>
<th>Index</th>
<th>Sample time</th>
<th>Laboratory value</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-2</td>
<td>22/01/2017 19:53</td>
<td>A</td>
</tr>
<tr>
<td>i-1</td>
<td>22/01/2017 19:53</td>
<td>A</td>
</tr>
<tr>
<td>i</td>
<td>23/01/2017 0:18</td>
<td>A</td>
</tr>
<tr>
<td>i+1</td>
<td>23/01/2017 0:18</td>
<td>B</td>
</tr>
<tr>
<td>i+2</td>
<td>23/01/2017 0:18</td>
<td>B</td>
</tr>
</tbody>
</table>

After the CUSUM has initiated a bias adjustment all CUSUM parameters are reset as indicated by the code on lines 171 to 185 of Figure 8. Additionally, adjustments are limited to the set maximum adjustment to limit the effect of any random errors that were not identified by the previous limiters. The final calculations of the outer loop are the simulated bias and BOR values. The loop then indexes and the code is continually executed until the end of the sub arrays. Following this, the average error of both the simulated and raw BOR are calculated and displayed together with the ARL, trigger count and lab sample count (Figure 9). These additional values provide the performance indicators required for simulation comparisons.
2.2.4 Standard CUSUM

The currently adopted CUSUM method used for the automatic bias adjustment of the BOR inferential indicated in Equation 2-1 and Equation 2-2 does not include the slack factor K of the standard CUSUM introduced in Chapter 1.1.3 (Equation 1-10 and Equation 1-11). Additionally, and most importantly the standard CUSUM incorporates a dynamic trigger value as a multiple of the measured variables standard deviation (Equation 1-12 and Equation 1-13). Therefore, simulation of the standard CUSUM enables comparison to the current method to establish any benefits of these additional parameters.

The core code of the standard CUSUM is the same as the current CUSUM code with the exception to the CUSUM calculations and the addition of the k and h parameters as indicated in Equation 2-3.
to Equation 2-5 where μ_0 the reference point is the laboratory analysis result, x_i is the average of the simulated BOR data set and σ is the standard deviation of the same data set. The additional parameter σ_{avg} used to calculate the dynamic trigger in Equation 2-5 is an average of the standard deviation values obtained during the current CUSUM run as indicated by the code on lines 148 to 151 of Figure 10. Resetting of this parameter is performed with other CUSUM parameters on the initiation of a bias adjustment.

\[
pos_{sum_i} = \max[0, (\mu_0 - (k\sigma)) - x_i + pos_{sum_{i-1}}]
\]

Equation 2-3

\[
eg_{sum_i} = \min[0, (\mu_0 - (k\sigma)) - x_i + neg_{sum_{i-1}}]
\]

Equation 2-4

\[
trig_val = h\sigma_{avg}
\]

Equation 2-5

Figure 10: Standard CUSUM calculation MATLAB code.

Standard CUSUM simulation tests involve introducing one new parameter at a time to assess their individual effects on the average error. However, setting parameter k to zero Equation 2-3 and Equation 2-4 are equivalent to Equation 2-1 and Equation 2-2 of the current CUSUM. This removal of the slack factor allows the impact of the dynamic trigger to be assessed before the slack factor is introduced. The typical values for these two parameters as indicated in Chapter 1.1.3 of $h = 5$ and $k = 0.5$ are set in the standard CUSUM simulations.
2.2.5 CUSUM Optimisation

Analysis of the average errors obtained from the current CUSUM and the standard CUSUM simulations described in Chapters 2.2.3 and 2.2.4 provide an indication of any error reductions with a dynamic CUSUM trigger of $h = 5$ in comparison to the fixed triggers of each unit tested. To obtain results that indicate the most appropriate method in determining the trigger value (fixed or dynamic) optimal values for each of these parameters are required.

Addition of the "for loop" function within MATLAB to the existing CUSUM simulation programmes allows the programmes to run a set number of times altering a parameter each cycle. Establishment of the parameter value resulting in the minimum average error for each case is indicated in the code within Figure 11 and Figure 12. On completion of the set number of cycles, the optimal parameter value and the corresponding minimum average error is displayed together with other performance indicators recorded in the previous simulations.

Due to the currently adopted fixed trigger values found in Table 2 ranging from 0.01 to 0.017, ten fixed triggers were tested from 0.01 to 0.1 in increments of 0.01 to find the optimum value. Likewise, using the typical value of $h = 5$ as the middle of the test values to determine the optimal dynamic trigger another ten values were tested from 1 to 10.

```matlab
if SimAvEr<MinEr
    MinEr=SimAvEr;
    opti_trig=trig_val;
    T=table(SimAvEr,RawAvEr,SimTrigCnt,LabSampleCount,ARL);
end

%display file and parameters used
Eprintf('File - %s : Unit - %s.%s','filename,sheet);
Eprintf('CUSUM Parameters: Optimal trig_val=%d, Minimum error=%d',opti_trig,MinEr);
```

Figure 11: Optimal CUSUM fixed trigger MATLAB code.
Figure 12: Optimal CUSUM dynamic trigger MATLAB code.
Chapter 3: Initial Results

To provide a measure of consistency with the results obtained all five of the units at Location 1 were selected for initial simulations. Therefore, requiring each simulation to run with five differing raw data sets obtained from the PHD. Comparing the results of a number of alternate data sets minimises the effect of abnormalities that may exist in the raw data. Results are displayed in tabular form together with associated data plots to assist initial discussion of each set of results.

3.1 Steady State Identifier

A four-week dataset from 07/08/2017 to 04/09/2017 for unit 1 of Location 1 was used to manually tune the R-statistic so that the simulation results were similar to the current SSI. The results obtained with the tuned R limiting parameter set to 5 are displayed in Table 5, clearly indicating similar performance between the two SSI methods. Simulations with the same tuned R-statistic were performed for the remaining four units for the same period resulting in slight variation in the differing methods acceptance.

Table 5: Tuned R-statistic parameter results Location 1 unit 1 (07/08/1017-04/09/2017).

<table>
<thead>
<tr>
<th>R-statistic SSI results (Location 1 07/08/2017 to 04/09/2017)</th>
<th>Laboratory count</th>
<th>Current SSI acceptance count</th>
<th>R-statistic SSI acceptance count</th>
<th>Current SSI acceptance percent</th>
<th>R-statistic SSI acceptance percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1</td>
<td>114</td>
<td>85</td>
<td>85</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Unit 2</td>
<td>111</td>
<td>79</td>
<td>73</td>
<td>71</td>
<td>66</td>
</tr>
<tr>
<td>Unit 3</td>
<td>121</td>
<td>82</td>
<td>83</td>
<td>68</td>
<td>69</td>
</tr>
<tr>
<td>Unit 4</td>
<td>113</td>
<td>60</td>
<td>71</td>
<td>53</td>
<td>63</td>
</tr>
<tr>
<td>Unit 5</td>
<td>122</td>
<td>91</td>
<td>193</td>
<td>75</td>
<td>84</td>
</tr>
</tbody>
</table>

Additional simulation for differing PHD datasets of periods during 2014, 2015 and 2016 are presented in Table 6 indicate the R-statistic results in lower acceptance percentage during the earlier years. The results obtained with the current SSI, however, provide less acceptance difference. This could
be an indication that the R-statistic is affected by changes in the inferential variance over time. Since the main reasoning in implementing this method was to alleviate the need of adjustment due to inferential variance additional investigation is required.

Table 6: SSI comparison results during 2014 to 2017 (Location 1, unit 1).

<table>
<thead>
<tr>
<th>PHD data period</th>
<th>Laboratory sample count</th>
<th>Current SSI acceptance count</th>
<th>R-statistic SSI acceptance count</th>
<th>Current SSI acceptance percent</th>
<th>R-statistic SSI acceptance percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/08/17-04/09/17</td>
<td>114</td>
<td>85</td>
<td>85</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>22/02/16-21/03/16</td>
<td>113</td>
<td>94</td>
<td>89</td>
<td>83</td>
<td>79</td>
</tr>
<tr>
<td>03/01/15-31/01/15</td>
<td>113</td>
<td>80</td>
<td>60</td>
<td>71</td>
<td>53</td>
</tr>
<tr>
<td>01/02/14-01/03/14</td>
<td>112</td>
<td>87</td>
<td>71</td>
<td>78</td>
<td>63</td>
</tr>
</tbody>
</table>

Further examination of the results discussed presented some other concerns with the R-statistic. Firstly, due to the filters within the R-statistic calculations, an inherent lag as displayed in Figure 13 shows that a TS was indicated when a sample result was entered at 7:30 pm on the 11/02/2014 (red vertical line at the 300-minute mark) when the BOR data shows the process has stabilised. This would result in no bias adjustment calculations being conducted for this laboratory sample. Secondly, Figure 14 illustrates the R-statistic does indeed adapt to the process noise as intended. The concern, in this case, is the magnitude of the noise is large enough to consider the data unusable for bias calculations. Finally again due to the lag of the R-statistic a TS may be missed leading to a type II error. An example of this is demonstrated in Figure 15 when a SSI is performed at 12:13 am on the 01/09/2017 for unit 3 of Location 1. It can be seen that the BOR is in a TS, but the R-statistic lags too much to identify it where the current SSI does.
NOTE: The plots in Figure 13, Figure 14 and Figure 15 have their BOR scale removed for confidentiality reasons but remain the same for comparison between plots. The vertical red makers are an indication of when a SSI identification is required, and the horizontal green markers are the set limiting parameter for each SSI method.

Figure 13: SSI comparison 11/02/2014 7:30 pm (Location 1, unit 1).

Figure 14: SSI comparison 21/02/2014 1:05am (Location 1, unit 1).
3.2 CUSUM Comparison Analysis

Results obtained from both the current CUSUM and standard CUSUM are presented in Table 7. Firstly, the dynamic trigger simulation without the slack factor shows a slight reduction in the average error across all five units. Secondly, the ARL for all units has also decreased. This reduction in the ARL in an indication of tighter trigger limits. Comparison of the current fixed trigger CUSUM plot in Figure 16 with the standard CUSUM plot in Figure 17 shows the dynamic trigger to be less than the fixed trigger for the majority of the 10-day period. The consistency of reduced error and ARL could be indicating the reduction in average error is due to lower ARL values. Finally, the addition of a typical slack factor of $k = 0.5$ to the standard CUSUM results in a consistent slight increase in average error.
Table 7: Current and Standard CUSUM bias adjustment average error results (Location 1, 2017).

<table>
<thead>
<tr>
<th>Location 1, 2017</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Current and Standard CUSUM simulation results</td>
<td>Unit 1</td>
<td>Unit 2</td>
<td>Unit 3</td>
<td>Unit 4</td>
<td>Unit 5</td>
</tr>
<tr>
<td>Current CUSUM fixed trigger</td>
<td>Average error</td>
<td>0.0034708</td>
<td>0.0035291</td>
<td>0.0040892</td>
<td>0.0029966</td>
</tr>
<tr>
<td></td>
<td>ARL</td>
<td>6.1</td>
<td>6.9</td>
<td>6.6</td>
<td>4.8</td>
</tr>
<tr>
<td>Dynamic trigger h = 5 k = 0</td>
<td>Average error</td>
<td>0.0032676</td>
<td>0.0034707</td>
<td>0.0037536</td>
<td>0.0029527</td>
</tr>
<tr>
<td></td>
<td>ARL</td>
<td>3.6</td>
<td>6.5</td>
<td>4.7</td>
<td>3.8</td>
</tr>
<tr>
<td>Dynamic trigger h = 5 k = 0.5</td>
<td>Average error</td>
<td>0.0033423</td>
<td>0.0035282</td>
<td>0.0038035</td>
<td>0.0030878</td>
</tr>
<tr>
<td></td>
<td>ARL</td>
<td>3.9</td>
<td>5.3</td>
<td>4.5</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Figure 16: Current CUSUM plot (Location 1, Unit 1).

Figure 17: Standard dynamic trigger CUSUM plot (Location 1, Unit 1).

Table 8 presents results of the optimisation simulations performed to obtain the trigger parameters of both the current and standard CUSUM resulting in the minimum average error of the 2017 data sets for Location 1. Four of the five unit results indicate the optimal fixed trigger to be the minimum
trigger tested in the simulation of 0.01. This could be indicating that lower trigger values would result in further reduction in average error. Additionally, units 2, 4 and 5 show the current trigger limits are set at the optimal of the tested parameters 0.012, 0.01 and 0.01 respectively.

Optimal dynamic trigger results show a further reduction in the average error and a significant drop in the CUSUM ARL with all units having an ARL less than two. Therefore, providing further evidence that a reduced ARL leads to a decreased average error. Additionally, it should be noted that a CUSUM with such a low ARL is by definition no longer operating as a CUSUM is intended, as run lengths are too short for any cumulation of errors. This lack of error cumulation is displayed with the optimal dynamic trigger CUSUM plot in Figure 18 showing a maximum run of three with four runs of only one.

Table 8: CUSUM Optimal parameter average error results (Location 1, 2017).

| CUSUM Optimal parameter simulation results (Location 1, 2017) |
|-----------------|--------|--------|--------|--------|--------|
| | Unit 1 | Unit 2 | Unit 3 | Unit 4 | Unit 5 |
| Optimal fixed trigger (0.01 – 0.1) | | | | | |
| Average error | 0.0032943 | 0.0035291 | 0.0039036 | 0.0029966 | 0.0032740 |
| ARL | 4.3 | 6.9 | 3.9 | 4.8 | 4.4 |
| Optimal trigger | 0.01 | 0.012 | 0.01 | 0.01 | 0.01 |
| Optimal dynamic trigger $h \sigma_{avg}$ | | | | | |
| $h = (1 \text{ to } 10)$ | | | | | |
| Average error | 0.0029597 | 0.0031124 | 0.0033578 | 0.0027046 | 0.0030671 |
| ARL | 1.6 | 1.2 | 1.3 | 1.1 | 1.2 |
| Optimal h | 3 | 1 | 2 | 1 | 1 |

Figure 18: Optimal dynamic trigger CUSUM plot (Location 1, Unit 1).
It can be seen in Table 9 that the most considerable reduction in error with respect to the current CUSUM were obtained via the optimal dynamic trigger simulations. Implementation of the optimal dynamic trigger results in error reductions ranging from 6.3% to a significant 17.9% where the maximum improvement of the other simulated methods was only 5.9%. As this optimal trigger CUSUM is no longer operating as a CUSUM and is providing the minimal average errors indicates that a CUSUM may not be the best method of bias adjustment for this specific application.

Table 9: CUSUM simulation percentage of average error reduction.

<table>
<thead>
<tr>
<th>CUSUM simulation results, average error reduction (Location 1, 2017)</th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
<th>Unit 4</th>
<th>Unit 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic trigger $h = 5$ $k = 0$</td>
<td>Average error reduction</td>
<td>5.9%</td>
<td>1.7%</td>
<td>8.2%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Dynamic trigger $h = 5$ $k = 0.5$</td>
<td>Average error reduction</td>
<td>3.7%</td>
<td>0.03%</td>
<td>7.0%</td>
<td>-3.0%</td>
</tr>
<tr>
<td>Optimal fixed trigger</td>
<td>Average error reduction</td>
<td>5.1%</td>
<td>0.0%</td>
<td>4.6%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Optimal dynamic trigger</td>
<td>Average error reduction</td>
<td>14.7%</td>
<td>11.8%</td>
<td>17.9%</td>
<td>9.7%</td>
</tr>
</tbody>
</table>
Chapter 4: Standard Filter Simulation

Simulations adopting the traditional methods introduced in 1.1.3 were created due to the significant improvements obtained with the optimal dynamic trigger initiating a bias adjustment nearly every laboratory sample entry. Firstly, a simulation using the bias calculation of Equation 1-8 is tested again for all five units of Location 1 using 2017 data sets. This is achieved by setting the filtering term of Equation 1-9 as $K = 1$. Additionally, as with the CUSUM simulations an optimisation simulation was ran for each data set to determine the optimal filtering term K for each unit.

```plaintext
% CUSUM calculation if error and std are within limits
if abs(SimErr)<max_err&SimStd<StdHl&SimStd>StdLo&...
    subLabData(1)<LabHl&subLabData(1)>LabLo&subLabData(1+2)==subLabData(1+3)
        Sim_n_adj=K*SimErr;
        SimErrSum=SimErrSum+abs(SimErr);
        SimErrCnt=SimErrCnt+1;
    else
        Sim_n_adj=0;
end
```
Chapter 5: Standard Filter Results

Average error results of the standard error filter simulations using Equation 1.9 are presented in Table 10. These results show considerable reductions in the average error by merely adjusting the bias by the established error \((K = 1)\) every laboratory result entered that passes the limiting parameters. Comparison of this method to a CUSUM can be by considering this method as having an ARL of one again supporting the insinuation in Chapter 3.2 that a lower ARL results in decreased average error.

Table 10: Standard error filter simulation average error results (Location 1, 2017).

<table>
<thead>
<tr>
<th>Error Filter (K(error))</th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
<th>Unit 4</th>
<th>Unit 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total error adjustment (K = 1) Average error</td>
<td>0.0029789</td>
<td>0.00330351</td>
<td>0.0029885</td>
<td>0.0025344</td>
<td>0.0027288</td>
</tr>
<tr>
<td>Optimal error filter Average error</td>
<td>0.0025922</td>
<td>0.0028276</td>
<td>0.0028876</td>
<td>0.0023946</td>
<td>0.002607</td>
</tr>
<tr>
<td>Optimal (K)</td>
<td>(K = 0.6)</td>
<td>(K = 0.5)</td>
<td>(K = 0.6)</td>
<td>(K = 0.5)</td>
<td>(K = 0.6)</td>
</tr>
</tbody>
</table>

Results obtained through establishing the optimal value of \(K\) for each unit show further error reduction than simply adjusting the bias by the complete error value. These improved results are an indicator that the filtering term is reducing the effect of small random and systematic errors in the sampling process as discussed in the beginning of Chapter 1.1.3. The consistency of the optimal error terms being 0.6 to 0.5 suggest regular gross errors across all five units. Most importantly is the significant average error reduction compared with the current CUSUM ranging from 19.9% to 29.4% presented in Table 11.
Table 11: Standard error filter, percentage average error reduction results (Location 1, 2017).

<table>
<thead>
<tr>
<th>Standard error filter simulation, percentage average error reduction (Location 1, 2017)</th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
<th>Unit 4</th>
<th>Unit 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error Filter $K(\text{error})$</td>
<td>14.2%</td>
<td>6.4%</td>
<td>26.9%</td>
<td>15.4%</td>
<td>16.7%</td>
</tr>
<tr>
<td>Total error adjustment $K = 1$</td>
<td>Average error reduction</td>
<td>25.3%</td>
<td>19.9%</td>
<td>29.4%</td>
<td>20.1%</td>
</tr>
</tbody>
</table>

Further simulations were performed to provide an understanding of the significant improvements the error filter shows over the current CUSUM. These simulations used unit 1 of Location 1 as a case study so that specific bias trends could be analysed. Initially, data obtained between the 50th and 150th day of 2017 was used as it isolated any periods the process or instrumentation were offline as displayed in the plot of Figure 19. Importantly the error reduction indicated in Table 11 is consistent with previous results.

![Filter Bias Comparison](image)

Figure 19: Current CUSUM and optimal error filter bias plot (Location 1, unit 1, days 50 to 150 of 2017).
Table 12: Current CUSUM and optimal error filter bias comparison (Location 1, unit 1, days 50 to 150 of 2017).

| Bias adjustment average error comparison Location 1 Unit 1 2017 (days 50-150) |
|---|---|
| | Current CUSUM Filter | Optimal Error Filter |
| Average error | 0.0031696 | 0.0023306 |
| Average error reduction percentage | N/A | 26.47% |

Focusing in on the 20 day period from days 50 to 70 of Figure 20 shows both methods producing two different bias trends. During the first ten days, each bias adjustment method results in a ramping bias indicating the inferential is drifting upwards, and the bias adjustment methods are attempting to case the BOR. Alternatively, the period between days 60 and 70 show both bias values remaining in a more steady state which is an indication that the BOR inferred value has minimal drift during that time frame resulting in minimal bias adjustments required.

Figure 20: Current CUSUM and optimal error filter bias plot (Location 1, unit 1, days 50 to 70 of 2017).
Table 13: Current CUSUM and optimal error filter bias comparison (Location 1, unit 1, days 50 to 70 of 2017).

<table>
<thead>
<tr>
<th>Bias adjustment average error comparison Location 1 Unit 1 2017 (days 50-70)</th>
<th>Current CUSUM Filter</th>
<th>Optimal Error Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average error</td>
<td>0.0036648</td>
<td>0.0022462</td>
</tr>
<tr>
<td>Average error reduction percentage</td>
<td>N/A</td>
<td>38.71%</td>
</tr>
</tbody>
</table>

The plot in Figure 21 shows the current CUSUM bias lagging the error filter bias during the period of inferential drift. This lag presented by the current CUSUM is due to the CUSUM only initiating a bias adjustment when the CUSUM reaches the set trigger value. Whereas the error filter updates the bias every accepted error calculation enabling the error filter to follow the drifting process value more closely. The resulting average error reduction of the error filter compared to the current CUSUM displayed in Table 13 is a very significant 51%. Alternatively, during the period of minimal drift shown in Figure 22 the error filter produces a slightly less stable bias than the current CUSUM resulting in an error increase of 10% as shown in Table 15. This is evidence that the CUSUM is optimal during periods of small drift as this is what it is intended to identify.

Figure 21: Current CUSUM and optimal error filter bias plot (Location 1, unit 1, days 50 to 60 of 2017).
Table 14: Current CUSUM and optimal error filter bias comparison (Location 1, unit 1, days 50 to 60 of 2017).

<table>
<thead>
<tr>
<th></th>
<th>Current CUSUM Filter</th>
<th>Optimal Error Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average error</td>
<td>0.0061034</td>
<td>0.0029637</td>
</tr>
<tr>
<td>Average error reduction percentage</td>
<td>N/A</td>
<td>51.44%</td>
</tr>
</tbody>
</table>

Figure 22: Current CUSUM and optimal error filter bias plot (Location 1, unit 1, days 60 to 70 of 2017).

Table 15: Current CUSUM and optimal error filter bias comparison (Location 1, unit 1, days 60 to 70 of 2017).

<table>
<thead>
<tr>
<th></th>
<th>Current CUSUM Filter</th>
<th>Optimal Error Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average error</td>
<td>0.0014527</td>
<td>0.001606</td>
</tr>
<tr>
<td>Average error reduction percentage</td>
<td>N/A</td>
<td>-10.55%</td>
</tr>
</tbody>
</table>
Chapter 6: Alternative Statistical Filter Simulation

Due to the benefits of adopting a standard error filter during the significant inferential drift and alternatively the increase in error during low levels of drift, two alternative bias adjustment methods are considered. These two methods the Fast Initial Response CUSUM and a Shewhart/CUSUM combination attempt to provide increased responsiveness to large shifts while maintaining the performance of the CUSUM during the minimal drift.

6.1 Fast Initial Response CUSUM

This method as its title suggests was devised to improve the sensitivity of the CUSUM during process start-up by Lucas and Crosier in 1982 [11]. This Fast Initial Response (FIR) is enabled by setting the initial value of positive and negative summation to a portion their respective trigger limits. By setting the summation values to this fixed initial setting after a bias adjustment enables the CUSUM to trigger with a lower ARL during the continued inferential drift. While the CUSUM will rapidly trigger during these high drift periods the IFR should have minimal effect with low drift as the CUSUM will quickly settle [13]. The typical IFR of a 50% head-start, where the CUSUM value is reset to half the set trigger value was adopted for these simulations. The FIR simulations in this project are an adaptation of the current fixed trigger CUSUM simulations.

```c
%FIR CUSUM reset
if sim_pos_sum(i-1)>sim_trig_val(i)|sim_neg_sum(i-1)<((-1)*sim_trig_val(i))
    sim_pos_cnt=0;
    sim_neg_cnt=0;
    sim_pos_sum(i)=sim_trig_val(i)/2;
    sim_neg_sum(i)=sim_trig_val(i)/2;
    sim8dCht=0;
    sim8dSum=0;
elseif sim_pos_sum(i-1)<sim_trig_val(i)&sim_neg_sum(i-1)>((-1)*sim_trig_val(i))
    sim_pos_cnt=sim_pos_cnt+1;
    sim_neg_cnt=sim_neg_cnt+1;
end
```
6.2 Shewhart and CUSUM Combination

As indicated in Chapter 1.1.3 the CUSUM was designed to provide an efficient method of detecting small mean shifts. This offered an alternative to the Shewhart control charts as their performance in these cases were poor [11]. Alternatively, as the discussed performance of the CUSUM is poor during large mean shifts. A conventional method of improving the repose of a CUSUM to large shifts is the combination of a Shewhart control with a CUSUM control. This simulation runs both the CUSUM and Shewhart control in parallel where a trigger of either will initiate a bias adjustment and reset the parameters of both. The typical value of $3.5 \sigma_{avg}$ [11] was adopted for the Shewhart trigger and the typical standard CUSUM trigger of $5 \sigma_{avg}$ [11] was also used. Extract of the MTLAB code in Figure 23 shows the implementation of using the average standard deviation as described in Chapter 2.2.4. Additionally, the slack term of the standard CUSUM was removed from the calculations but setting parameter k to zero due to the findings in Chapter 3.2 indicating increases in average error with the addition of the slack factor.

```
144 %Shewhart/CUSUM control calculations
145 if abs(SimErr(i))<max_err&Sim5dCst&Sim5dHil&Sim5dLil&...
146 subLabData{i}<LabHil&subLabData{i}>LabLow&subLabData{i+2}==subLabData{i+3}
147 Sim5dCnt=Sim5dCnt+1;
148 Sim5dSum=Sim5dSum+Sim5d;
149 Sim5dAvg=Sim5dSum/3*Sim5dCnt;
150 CU_trig_val(i)=Sim5dAvg; %CUSUM trigger
151 Sw_trig_val(i)=(3.5)*Sim5dAvg; %Shewhart trigger
152 Sim_pos_sum(i)=max(0, (SimLabData(i-2)-k*Sim5d)+Sim_pos_sum(i-1));
153 Sim_neg_sum(i)=min(0, (SimLabData(i-2)-(k*Sim5d)+Sim_neg_sum(i-1));
154 SimErrSum=SimErrSum+abs(SimErr(i));
155 SimErrCnt=SimErrCnt+1;
156 else
157 Sim_pos_sum(i)=Sim_pos_sum(i-1);
158 Sim_neg_sum(i)=Sim_neg_sum(i-1);
159 CU_trig_val(i)=CU_trig_val(i-1);  
160 Sw_trig_val(i)=Sw_trig_val(i-1);  
end
```

Figure 23: Shewhart/CUSUM control calculations MATLAB code.
Chapter 7: Final Results

Initial results obtained from the FIR CUSUM and the Shewhart/CUSUM simulations are offered in Table 16. These initial results show the Shewhart/CUSUM method provides lower average errors than the FIR CUSUM across all five units tested over the 2017 obtained data range. These alternative simulations were conducted to replicate the error filter results during periods of inferential drift but also maintain the performance of the current CUSUM during relative inferential stability. Additional plots for the same periods of drift and stability of the inferential previously used in Chapter 5: Standard Filter Results are provided in Figure 24 and Figure 25.

Table 16: FIR CUSUM simulation average error results (Location 1, 2017).

<table>
<thead>
<tr>
<th></th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
<th>Unit 4</th>
<th>Unit 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIR CUSUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average error</td>
<td>0.0033075</td>
<td>0.0036216</td>
<td>0.0038952</td>
<td>0.003051</td>
<td>0.0033696</td>
</tr>
<tr>
<td>ARL</td>
<td>5.2</td>
<td>7.8</td>
<td>5.1</td>
<td>4.9</td>
<td>4.5</td>
</tr>
<tr>
<td>Shewhart & CUSUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average error</td>
<td>0.0030500</td>
<td>0.0032248</td>
<td>0.0035266</td>
<td>0.027255</td>
<td>0.0030305</td>
</tr>
<tr>
<td>ARL</td>
<td>1.8</td>
<td>1.6</td>
<td>1.7</td>
<td>2.6</td>
<td>1.6</td>
</tr>
</tbody>
</table>

During the period of drift, Figure 24 illustrates that the FIR CUSUM still results in bias lag whereas the Shewhart/CUSUM adjustment method provides a substantial reduction in the bias lag. Results presented in Table 17 reiterate the link between reduced average error and reduced bias lag. While the Shewhart method provides a noteworthy improvement over the current CUSUM, the optimal error filter still results in the most significant error reduction.
Figure 24: Alternative bias adjustment plot (Location 1, unit 1, days 50 to 60 of 2017).

Table 17: Alternative bias adjustment results (Location 1, unit 1, days 50 to 60 of 2017).

<table>
<thead>
<tr>
<th>Alternative bias adjustment comparison Location 1 Unit 1 2017 (days 50-60)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Average error</td>
</tr>
<tr>
<td>Average error reduction percentage</td>
</tr>
</tbody>
</table>

Periods of minimal drift in the inferred BOR as illustrated in Figure 25 result in both the FIR CUSUM and the Shewhart/CUSUM simulations providing increased stability over the optimal error filter. Importantly the Shewhart/CUSUM plot matched very close to the current CUSUM simulated bias. Average error reduction results in Table 18 for this tested period show a further increase in error from the FIR CUSUM simulation. Alternatively, the Shewhart/CUSUM simulation provides a slight improvement over the average error obtained from the optimal error filter. While the Shewhart/CUSUM simulation provides improvements to the error filter during stability, an average over both transient and stable inferential as displayed in Figure 26 result in the optimal error filter still providing the minimum average error (Table 19).
Figure 25: Alternative bias adjustment plot (Location 1, unit 1, days 60 to 70 of 2017).

Table 18: Alternative bias adjustment results (Location 1, unit 1, days 60 to 70 of 2017).

<table>
<thead>
<tr>
<th></th>
<th>Current CUSUM Filter</th>
<th>Optimal Error Filter</th>
<th>FIR CUSUM</th>
<th>Shewhart & CUSUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average error</td>
<td>0.0014527</td>
<td>0.001606</td>
<td>0.0016466</td>
<td>0.0015698</td>
</tr>
<tr>
<td>Average error reduction percentage</td>
<td>N/A</td>
<td>-10.56%</td>
<td>-13.35%</td>
<td>-8.06%</td>
</tr>
</tbody>
</table>
Figure 26: Alternative bias adjustment plot (Location 1, unit 1, days 50 to 70 of 2017).

Table 19: Alternative bias adjustment results (Location 1, unit 1, days 50 to 70 of 2017).

| Alternative bias adjustment comparison Location 1 Unit 1 2017 (days 50-70) |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| | Current CUSUM Filter | Optimal Error Filter | FIR CUSUM | Shewhart & CUSUM |
| Average error | 0.0031696 | 0.0023306 | 0.0036783 | 0.0025492 |
| Average error reduction percentage | N/A | 26.47% | -16.05% | 19.57% |

The final results of all simulated bias adjustment methods for Location 1 using PHD data from the 2017 period indicated in Table 1 are contained in Table 20. These results show the optimal error filter providing the highest magnitude of error reduction for all five units. The current CUSUM, as well as optimal error filter results for Location 2 and Location 3, are displayed in Table 21 and Table 22 again showing the uniformity of the filter parameter K within each location. Significant improvement over the current adjustment method is shown to be consistent across the other two locations units as displayed in Table 23. This continued improvement is due to all three locations exhibiting cyclic drift of the inferred BOR as illustrated in Figure 27. It is also evident that the smaller improvements obtained during simulations for Location 2 is due to the observed less significant drift.
Table 20: Complete average error reduction results for all simulations (Location 1, 2017).

<table>
<thead>
<tr>
<th>Bias adjustment method</th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
<th>Unit 4</th>
<th>Unit 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic trigger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$h = 5$ $k = 0$</td>
<td>5.9%</td>
<td>1.7%</td>
<td>8.2%</td>
<td>1.5%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Dynamic trigger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$h = 5$ $k = 0.5$</td>
<td>3.7%</td>
<td>2.6%</td>
<td>7.0%</td>
<td>-3.0%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Optimal fixed trigger</td>
<td>5.1%</td>
<td>0.0%</td>
<td>4.6%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Optimal dynamic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trigger $k = 0$</td>
<td>14.7%</td>
<td>11.8%</td>
<td>17.9%</td>
<td>9.7%</td>
<td>6.3%</td>
</tr>
<tr>
<td>Error filter</td>
<td>$K = 1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.2%</td>
<td>6.4%</td>
<td>26.9%</td>
<td>15.4%</td>
<td>16.7%</td>
</tr>
<tr>
<td>Optimal error filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K = 0.4$</td>
<td>25.3%</td>
<td>19.9%</td>
<td>29.4%</td>
<td>20.1%</td>
<td>20.4%</td>
</tr>
<tr>
<td>FIR CUSUM</td>
<td>4.7%</td>
<td>-2.6</td>
<td>4.7</td>
<td>-1.8</td>
<td>-2.9</td>
</tr>
<tr>
<td>Shewhart/CUSUM</td>
<td>12.1%</td>
<td>8.6%</td>
<td>13.8%</td>
<td>9.0%</td>
<td>7.4%</td>
</tr>
</tbody>
</table>

Table 21: Location 2 simulation results 2017.

| Current CUSUM and Optimal error filter simulation average error results (Location 2, 2017) |
|---|--------|--------|--------|--------|--------|
| | Unit 1 | Unit 2 | Unit 3 | Unit 4 | Unit 5 |
| Current CUSUM | | | | | |
| Average error | 0.0038371 | 0.0030270 | 0.0030144 | 0.0032547 | 0.0033413 |
| Optimal error filter | | | | | |
| Average error | 0.0032144 | 0.0026352 | 0.0024994 | 0.0028207 | 0.0027547 |
| Optimal K | $K = 0.4$ | $K = 0.4$ | $K = 0.5$ | $K = 0.4$ | $K = 0.4$ |

Table 22: Location 3 simulation results 2017.

| Current CUSUM and Optimal error filter simulation average error results (Location 3, 2017) |
|---|--------|--------|
| | Unit 1 | Unit 2 |
| Current CUSUM | | |
| Average error | 0.0045128 | 0.0043602 |
| Optimal error filter | | |
| Average error | 0.0035917 | 0.0035242 |
| Optimal K | $K = 0.6$ | $K = 0.6$ |
Table 23: Optimal error filter average error reduction results (all locations).

<table>
<thead>
<tr>
<th>Site</th>
<th>Year</th>
<th>Unit 1</th>
<th>Unit 2</th>
<th>Unit 3</th>
<th>Unit 4</th>
<th>Unit 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location 1</td>
<td>2017</td>
<td>25.31%</td>
<td>19.88%</td>
<td>29.38%</td>
<td>20.09%</td>
<td>23.84%</td>
</tr>
<tr>
<td>Location 2</td>
<td>2017</td>
<td>16.23%</td>
<td>12.94%</td>
<td>17.08%</td>
<td>13.33%</td>
<td>17.56%</td>
</tr>
<tr>
<td>Location 3</td>
<td>2017</td>
<td>20.41%</td>
<td>19.17%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Figure 27: All three locations bias comparison (2017).
Chapter 8: Discussion

The intended purpose of simulating an alternative SSI was to enable consistent results over a fluctuating process noise variance alleviating the need to adjust the limiting parameter over time. While Figure 14 indicates evidence of this being the case the level of process noise could affect error calculations resulting in incorrect bias adjustment. This coupled with the lagging nature of the R-statistic resulting in type I and type II errors shows little if any benefit of replacing the current standard deviation method of SSI.

The bias adjustment simulation results presented in this Thesis use the laboratory analysis results as the reference for calculating the inferred BOR error. This assumption of zero error in the laboratory results has been made for two reasons. Firstly, the limiting parameters of Table 2 help to remove most of the outlying errors. Secondly, the primary performance indicator of the average error reduction uses the current CUSUM results as this error reduction reference. This results in the gross and random errors present after the limiting parameters being present in both the current CUSUM and comparing method calculations. Therefore, standardising the error reductions from these unknown errors.

Initial CUSUM simulation results summarised in Table 9 show consistent error reduction across all tested units when the standard CUSUM method of calculating the trigger value (Equation 2-5) is implemented. This reduction in error coincides with decreasing ARL results and tightening of the trigger limits as indicated in Table 7 and Figure 17 respectively. A standard CUSUM usually incorporates a slack factor $k\sigma$ to reduce the effects of noise by only using errors greater than $k\sigma$ in the CUSUM calculation. While the typical value for this slack factor is documented to be $k = 0.5$ [11] simulated results for this application cause a reduction in the improvements made with the standard dynamic trigger. These negative results suggest the error noise required to be removed from the calculations to provide an improvement in the results is less than 0.5σ and can be considered insignificant for the purposes of this investigation.
Of most interest when comparing the simulated CUSUM methods is the trend of reduced average error with lower ARL values. We can see that the optimisation simulations for both the fixed and dynamic triggers while designed to establish the triggers resulting in minimum average error drive these trigger values down. These diminishing values are evident in the results of Table 8 indicating that the majority of optimal trigger parameters are found to be the lowest value tested. These low trigger values directly reduce the ARL of the CUSUM as illustrated in Figure 18 and cause the CUSUM to operate outside the definitions of a CUSUM. This initial analysis indicates that a CUSUM may not be the optimal solution for this application.

Simulating the traditional method of correcting the bias by the full magnitude of the error provided results similar to those obtained with the optimal dynamic trigger (Table 20). These results are unsurprising due to the optimal dynamic trigger for each unit provided an ARL less than two which is similar to adding the error to the bias nearly every approved laboratory result as the case is with the traditional method.

The significant and consistent improvement in the bias-corrected inferential obtained with the use of the optimal error filter is of great interest. Research suggests even an error filtering term added to the traditional method of bias adjustment leads to results that are predominantly worse than when a CUSUM is implemented [9]. Further investigation shows significant drift in the inferred value of the BOR resulting in the bias calculated with a CUSUM lagging due to the number of samples required for the CUSUM to trigger the required bias adjustment. This is an inherent issue of a CUSUM as they are designed to monitor small mean shifts and provide poor performance in detecting large shifts [11]. Due to this and the inherent cyclic drift of the current inferential displayed in Figure 27 the optimal error filter while not recommended in most cases provides significant reductions in the average error for this application.

Focused analysis indicates periods when the current CUSUM performs better than the optimal error filter. These periods as displayed in Figure 22 are indicative of minimal drift which is the application
a CUSUM is intended for. While these periods exist, the majority of the inferential is transient in nature. Two alternative CUSUM methods were simulated in an attempt to combine the positive results of the error filter during transient periods and the CUSUM during periods of relatively stable inferred BOR values. Of these two methods, the FIR CUSUM showed little if any improvement in the results of the error filter. Alternatively, the combination of a Shewhart and CUSUM calculation showed promise by only reducing the improvements slightly during transient periods but also resulting in a small improvement during stability. While this Shewhart/CUSUM method is an option for possible consideration, the overall average error reduction for each unit of Location 1 (Table 20) obtained with the optimal error filter is considerably more significant. Additionally, the optimal error filter shows consistently significant results across all three locations as indicated in Table 23.
Chapter 9: Conclusion

Simulation of the R-statistic was implemented in an attempt to improve the method of SSI used to establish when an error calculation should be made. The R-statistic being a ratio of two different methods of determining the variance of sequential data points provides minimal difference of results during fluctuations in process noise. This was proven but what was not anticipated was this very attribute producing type II errors during noise levels considered too high for error calculations to be accurate. For this reason and the increased type I and II errors resulting from the lagging nature of this method, the R-statistic is not recommend without further development.

Literature research shows that in the majority of cases the use of a CUSUM algorithm produces lower errors than the traditional error filter when used to automatically adjust an inferential bias [9]. This is due to the error filter introducing random errors caused by the sampling process into the inferred calculation. While this has been indicated to be the case during relatively stable periods of the inferred value the majority of the tested inferential values are more transient than stable. This transient nature of the inferred BOR indicates a nonlinearity in the conductivity and BOR relationship and or the requirement for additional process variables to be included in the BOR calculation. Therefore, it is recommended to investigate the current inferential calculations and identify any modifications required.

The substantial reductions in the average error across all twelve units obtained with the optimal error filter simulations suggest any random sampling errors are of less significance than the inferred bias error introduced by the lagging CUSUM. Therefore, the second recommendation is to initially implement the optimal error filter to the control system of a number of the units to assess its performance online. Implementation of the optimal error filter will provide instant improvements in the inferred BOR enabling increased control capabilities. Reassessment of the most appropriate bias adjustment method after any alternation to the inferential calculation would ensure the optimal method of bias adjustment is maintained.
Chapter 10: References

Appendix

A.1 Reference Documentation Links

Honeywell - DOC4000 User Guide Version 4.0

Introduces the required tools and necessary information in the navigation of the DOC4000 automation Genome enabling access to the TDC3000 control language and tags required for the current system analysis.

Honeywell - TDC3000 Engineers Reference Manual

Provides information enabling insight into the current control system used in the BOR bias adjustment.

Honeywell – Control Language Application Module Reference Manual

Complete reference manual on the control language used in the current control system used for the bias adjustment program.

Honeywell – Uniformance Process Studio User Guide

User guide providing method for searching complete tags required for PHD data extraction.

Honeywell – Uniformance Excel Companion (Profit Embedded PHD) User Guide

User guide for the Microsoft Excel add-in required for data extraction from the PHD.

MATLAB Documentation - MathWorks

Link to MathWorks web page with access to MATLAB code examples and reference documentation.
A.2 Simulation Code

A2.1 Steady State Identification Simulation code

```matlab
%Import data from Excel
%Manually enter "filename", "sheet" and "###_xlRange" variables.
filename='LOC1_BOR_20170807-20170904.xlsx';
sheet='U1 BOR';
RawData_xlRange='B14:B40334';
StdData_xlRange='J14:J40334';
ErrorData_xlRange='I14:I40334';
LabData_xlRange='F14:F40334';
TimeStamp_xlRange='A14:A40334';
SampleTime_xlRange='E14:E40334';
AvgData_xlRange='G14:G40334';

RawData = xlsread(filename, sheet, RawData_xlRange);
StdData=xlsread(filename, sheet, StdData_xlRange);
ErrorData=xlsread(filename, sheet, ErrorData_xlRange);
LabData=xlsread(filename, sheet, LabData_xlRange);
[num,text,TimeStamp]=xlsread(filename, sheet, TimeStamp_xlRange);
[num2,text2,SampleTime]=xlsread(filename, sheet, SampleTime_xlRange);
AvgData=xlsread(filename, sheet, AvgData_xlRange);

Dsize=size(RawData);
Dsize=Dsize(1,1);
StdHi=0.005; % Ensure correct setting for location and unit.
StdLow=0;
ErrorLim=0.015;

% Subarray adjustment
subtime=Dsize/2;
subsize=subtime-2;
% subtime=36013 + 2;
% subsize=300;

subRawData=RawData(subtime-subsize:subtime+subsize,1);
subStdData=StdData(subtime-subsize:subtime+subsize,1);
subErrorData=ErrorData(subtime-subsize:subtime+subsize,1);
subLabData=LabData(subtime-subsize:subtime+subsize,1);
subTimeStamp=TimeStamp(subtime-subsize:subtime+subsize,1);
subSampleTime=SampleTime(subtime-subsize:subtime+subsize,1);
subAvgData=AvgData(subtime-subsize:subtime+subsize,1);

Error=[subErrorData];
Std=[subStdData];
Lab=[subLabData];
AVG=[subAvgData];

datasize=size(subRawData);
datasize=datasize(1,1);
t=1:datasize;

%data filter variables
dataF=[RawData(subtime-subsize)];
```

Page 54
lam1=0.2;
%variance estimate No.1
lam2=0.1;
v2F=[lam2*((RawData(subtime-subsize)-(RawData(subtime-subsize-1))).^2)];
%variance estimate No.2
lam3=0.1;
sigF=[lam3*((RawData(subtime-subsize)-(RawData(subtime-subsize-1))).^2)];

% Initiate variables
R=[1];
Rhi=5;
Rlow=0;
TestR=[1];
NewSSI=[0];
CurrentSSI=[0];
LabSample=[min(RawData)];
NewSSICount=0;
CurrentSSICount=0;
LabSampleCount=0;
ShiftCount=0;
AvgTime=10;
i=1;
TempTime=' ';
SD=[0];

while i<datasize
 i=i+1;
 % data filter
dataF(i)=lam1*subRawData(i)+(1-lam1)*dataF(i-1);
%variance estimate No.1
v2F(i)=lam2*((subRawData(i)-(dataF(i-1))).^2)+(1-lam2)*v2F(i-1);
%variance estimate No.2
sigF(i)=lam3*((subRawData(i)-subRawData(i-1)).^2)+(1-lam3)*sigF(i-1);
% ratio of variance #1 & #2
R(i)=((2-lam1)*v2F(i))/sigF(i);

% Raw data average
if i>12&&i<datasize-12
 avg(i)=mean(subRawData(i-AvgTime:i+AvgTime));
 SD(i)=std(subRawData(i-AvgTime:i+AvgTime));
else
 avg(i)=subRawData(i);
 SD(i)=0;
end

% New steady state identifier
if R(i)>Rlow&R(i)<Rhi
 NewSSI(i)=1;
else
 NewSSI(i)=0;
end
end

i=1;
while i<datasize
 i=i+1;
% Test for new laboratory result
if strcmp(subSampleTime(i), subSampleTime(i-1)) == 0
 n = 1;

 % Zero "LabSampleTime" seconds
 LabSampleCount = LabSampleCount + 1;
 TempTime = char(subSampleTime(i));
 TempTime = fliplr(TempTime);
 TempTime(4:6) = '00:';
 TempTime = fliplr(TempTime);

 % Match "LabSampleTime" with "TimeStamp" to align data
 while n < datasize
 n = n + 1;
 if strcmp(TempTime, subTimeStamp(n)) == 1
 Error(n:datasize) = subErrorData(i);
 Std(n:datasize) = subStdData(i);
 Lab(n:datasize) = subLabData(i);
 AVG(n:datasize) = subAvgData(i);
 ShiftCount = ShiftCount + 1;
 ShiftSampleTime = char(subSampleTime(i));
 ShiftTimeStamp = char(subTimeStamp(i));
 end
 end
else
 Error(i) = Error(i-1);
 Std(i) = Std(i-1);
 Lab(i) = Lab(i-1);
 AVG(i) = AVG(i-1);
end
end

i = 1;
while i < datasize
 i = i + 1;

 % Current steady state identifier
 Error(i) = abs(Error(i));
 if Std(i) > StdLow && Std(i) < StdHi
 CurrentSSI(i) = 1;
 else
 CurrentSSI(i) = 0;
 end

 if Lab(i) ~= Lab(i-1)
 LabSample(i) = Lab(i);
 TestR(i) = R(i);
 if R(i) > Rlow && R(i) < Rhi
 NewSSICount = NewSSICount + 1;
 end
 end

 if Std(i) > StdLow && Std(i) < StdHi
 CurrentSSICount = CurrentSSICount + 1;
 end

else
 LabSample(i) = min(RawData);
 TestR(i) = TestR(i-1);
% Display conflicting SSI triggers
if Lab(i)~=Lab(i-1) && CurrentSSI(i)==1 && NewSSI(i)==1
 Time=char(subTimeStamp(i));
 fprintf('NewSSI = TS and CurrentSSI = SS at time = %s or t(%d).\n',Time,t(i));
end
if Lab(i)~=Lab(i-1) && CurrentSSI(i)==0 && NewSSI(i)==0
 Time=char(subTimeStamp(i));
 fprintf('CurrentSSI = TS and NewSSI = SS at time = %s or t(%d).\n',Time,t(i));
end
end

% Plot PHD BOR, calculated standard deviation and R-statistic ratio
figure(1)
subplot(3,1,1);
plot(t,subRawData);
ylim([0.74,0.8]);
title('Steady State Identifier Test Data');
legend('Raw Data');
ylabel('BOR');

subplot(3,1,2);
plot(t,SD);
ylim([0.0,0.015]);
legend('Standard Deviation');
ylabel('std');

subplot(3,1,3);
plot(t,R);
legend('Variance Ratio');
ylabel('var1/var2');
xlabel('Time (min)');

% Display count results
fprintf('File - %s : Unit - %s.\n',filename,sheet);
CurrentSSIPercent=CurrentSSICount/LabSampleCount*100;
NewSSIPercent=NewSSICount/LabSampleCount*100;
T=table(LabSampleCount,CurrentSSICount,NewSSICount,CurrentSSIPercent,NewSSIPercent)
tic

%Import data from Excel
%Manually enter "filename", "sheet" and "###_xlRange" variables.
filename='LOC1_BOR_2017.xlsx';
sheet='U1 BOR';
BORData_xlRange='B3:B362883';
BiasData_xlRange='D3:D362883';
StdData_xlRange='J3:J362883';
ErrorData_xlRange='I3:I362883';
LabData_xlRange='F3:F362883';
TimeStamp_xlRange='A3:A362883';
SampleTime_xlRange='E3:E362883';
AvgData_xlRange='G3:G362883';

BORData = xlsread(filename, sheet, BORData_xlRange);
BiasData = xlsread(filename, sheet, BiasData_xlRange);
StdData=xlsread(filename, sheet, StdData_xlRange);
ErrorData=xlsread(filename, sheet, ErrorData_xlRange);
LabData=xlsread(filename, sheet, LabData_xlRange);
[num,text,TimeStamp]=xlsread(filename, sheet, TimeStamp_xlRange);
[num2,text2,SampleTime]=xlsread(filename, sheet, SampleTime_xlRange);
AvgData=xlsread(filename, sheet, AvgData_xlRange);

%Create sub data arrays to target data of interest
Dsize=size(BORData);
Dsize=Dsize(1,1);
% subtime=Dsize/2;
% subsize=subtime-2;
subtime=144000;
subsize=300;
subBORData=BORData(subtime-subsize:subtime+subsize,1);
subBiasData=BiasData(subtime-subsize:subtime+subsize,1);
subStdData=StdData(subtime-subsize:subtime+subsize,1);
subErrorData=ErrorData(subtime-subsize:subtime+subsize,1);
subLabData=LabData(subtime-subsize:subtime+subsize,1);
subTimeStamp=TimeStamp(subtime-subsize:subtime+subsize,1);
subSampleTime=SampleTime(subtime-subsize:subtime+subsize,1);
subAvgData=AvgData(subtime-subsize:subtime+subsize,1);
subRawData=subBORData-subBiasData;
subRawError=subErrorData-subBiasData;

%Parameter limits ensure correct for location and unit being tested.
sd_hi=0.005;
sd_lo=0;
max_err=0.015;
max_adj=0.005;
lab_hi=0.8;
lab_lo=0.65;
CURRENT_trig_val=[0.014]; %Array type to enable plotting
x_val=10;

%Simulated CUSUM variables
Sim_n_adj=0; %Bias adjustment
Sim_pos_sum=[0]; %CUSUM upper control limit (array type to enable plotting)
Sim_neg_sum=[0]; %CUSUM lower control limit (array type to enable plotting)
Sim_pos_cnt=0; %CUSUM upper summation
Sim_neg_cnt=0; %CUSUM lower summation

% Initiate data arrays and variables
SimAvg=[AVG];
SimAv=AVG(1);
SimStd=[subStdData];
SimSd=Std(1);
datasize=size(subBORData);
datasize=datasize(1,1);
t=1:datasize;
LabSampleCount=0;
TempTime=' ';

SimErrorArray=[Error];
ErrSum=0;
SimErrSum=0;
RawErrSum=0;
ARLsum=0;
ErrCnt=0;
RawErrCnt=0;
SimErrCnt=0;
SimTrigCnt=0;
TestSampleCount=0;

SimBias=[subBiasData(1)];
SimData=[subBORData];
SimAvg=AVG;

i=1;
while i<datasize
 i=i+1;
 CURRENT_trig_val(i)=CURRENT_trig_val(i-1);
 Sim_pos_sum(i)=Sim_pos_sum(i-1);
 Sim_neg_sum(i)=Sim_neg_sum(i-1);

 %Test for new laboratory result
 if strcmp(subSampleTime(i),subSampleTime(i-1))==0
 %Set Sample Time seconds to :00
 TempTime=char(subSampleTime(i));
 TempTime=fliplr(TempTime);
 TempTime(4:6)='00:';
 TempTime=fliplr(TempTime);
 TestSampleCount=TestSampleCount+1;

 %Find online data at lab sample time
 n=1;
 while n<datasize
 n=n+1;
 if strcmp(TempTime,subTimeStamp(n))==1
 if n>10
 TestData=[SimData(n-x_val:n+x_val)];
 else
 TestData=[SimData(1:n+x_val)];
 end
 SimAv=mean(TestData);
 SimSd=std(TestData);
SimErr = subLabData(i+2) - SimAv;
SimErrorArray(i) = subLabData(i+2) - SimAv;
RawErr = subLabData(i+2) - RawAVG(i);
LabSampleCount = LabSampleCount + 1;

% Average error calculations
if abs(SimErr) < max_err && SimSd < sd_hi && SimSd > sd_lo &&
subLabData(i) < lab_hi && subLabData(i) > lab_lo && subLabData(i+2) == subLabData(i+3)
 RawErrSum = RawErrSum + abs(RawErr);
 RawErrCnt = RawErrCnt + 1;
end

% CUSUM calculation if parameters are within limits
if abs(SimErr) < max_err && SimSd < sd_hi && SimSd > sd_lo &&
subLabData(i) < lab_hi && subLabData(i) > lab_lo && subLabData(i+2) == subLabData(i+3)
 Sim_pos_sum(i) = max(0, Sim_pos_sum(i-1) + SimErr);
 Sim_neg_sum(i) = min(0, Sim_neg_sum(i-1) + SimErr);
 SimErrSum = SimErrSum + abs(SimErr);
 SimErrCnt = SimErrCnt + 1;
else
 Sim_pos_sum(i) = Sim_pos_sum(i-1);
 Sim_neg_sum(i) = Sim_neg_sum(i-1);
end

% Bias adjustment calculation
if Sim_pos_sum(i-1) > CURRENT_trig_val(i)
 Sim_n_adj = Sim_pos_sum(i) / (Sim_pos_cnt + 1);
 SimTrigCnt = SimTrigCnt + 1;
 ARLsum = ARLsum + Sim_pos_cnt;
elseif Sim_neg_sum(i-1) < ((-1) * CURRENT_trig_val(i))
 Sim_n_adj = Sim_neg_sum(i) / (Sim_neg_cnt + 1);
 SimTrigCnt = SimTrigCnt + 1;
 ARLsum = ARLsum + Sim_neg_cnt;
else
 Sim_n_adj = 0;
end

% CUSUM reset
if Sim_pos_sum(i-1) > CURRENT_trig_val(i) || Sim_neg_sum(i-1) < ((-1) * CURRENT_trig_val(i))
 Sim_pos_cnt = 0;
 Sim_neg_cnt = 0;
 Sim_pos_sum(i) = 0;
 Sim_neg_sum(i) = 0;
elseif Sim_pos_sum(i-1) < CURRENT_trig_val(i) && Sim_neg_sum(i-1) > ((-1) * CURRENT_trig_val(i))
 Sim_pos_cnt = Sim_pos_cnt + 1;
 Sim_neg_cnt = Sim_neg_cnt + 1;
end
if Sim_pos_sum(i) == 0
 Sim_pos_cnt = 0;
end
if Sim_neg_sum(i) == 0
 Sim_neg_cnt = 0;
end
%Adjustment limit
if Sim_n_adj>max_adj
 Sim_n_adj=max_adj;
end
if Sim_n_adj<((-1)*max_adj)
 Sim_n_adj=(((-1)*max_adj);
end

%exit while loop
break
end
SimAvg(i)=SimAv;
SimStd(i)=SimSd;
end

else
 %Index arrays keeping last value if no change.
 SimErrorArray(i)=SimErrorArray(i-1);
 Sim_n_adj=0;
 SimAvg(i)=SimAvg(i-1);
 SimStd(i)=SimStd(i-1);
end

%Update bias and bias corrected BOR
SimBias(i)=SimBias(i-1)+Sim_n_adj;
SimData(i)=subRawData(i)+SimBias(i);
end

%Calculate and display average errors
SimAvEr=SimErrSum/SimErrCnt;
RawAvEr=RawErrSum/RawErrCnt;
ARL_Avg=ARLsum/SimTrigCnt;
T=table(SimAvEr,RawAvEr,SimTrigCnt,LabSampleCount,ARL_Avg)

%Display file and parameters used
fprintf('File - %s : Unit - %s.
',filename,sheet);
fprintf('Current CUSUM Parameters: trig_val=%d, max_error=%d
',CURRENT_trig_val(l),max_err);

%Display program run time
runtime=toc;
fprintf('Program runtime = %0.0f minutes.
',runtime/60);
tic

%Import data from Excel
%Manually enter "filename", "sheet" and "###_xlRange" variables.
filename='LOC1_BOR_2017.xlsx';
sheet='U1 BOR';
BORData_xlRange='B3:B362883';
BiasData_xlRange='D3:D362883';
StdData_xlRange='J3:J362883';
ErrorData_xlRange='I3:I362883';
LabData_xlRange='F3:F362883';
TimeStamp_xlRange='A3:A362883';
SampleTime_xlRange='E3:E362883';
AvgData_xlRange='G3:G362883';

BORData = xlsread(filename, sheet, BORData_xlRange);
BiasData = xlsread(filename, sheet, BiasData_xlRange);
StdData=xlsread(filename, sheet, StdData_xlRange);
ErrorData=xlsread(filename, sheet, ErrorData_xlRange);
LabData=xlsread(filename, sheet, LabData_xlRange);
[num,text,TimeStamp]=xlsread(filename, sheet, TimeStamp_xlRange);
[num2,text2,SampleTime]=xlsread(filename, sheet, SampleTime_xlRange);
AvgData=xlsread(filename, sheet, AvgData_xlRange);

%Create sub data arrays to target data of interest
Dsize=size(BORData);
Dsize=Dsize(1,1);
% subtime=Dsize/2;
% subsize=subtime-
subsize=300;
subBORData=BORData(subtime-subsize:subtime+subsize,1);
subBiasData=BiasData(subtime-subsize:subtime+subsize,1);
subStdData=StdData(subtime-subsize:subtime+subsize,1);
subErrorData=ErrorData(subtime-subsize:subtime+subsize,1);
subLabData=LabData(subtime-subsize:subtime+subsize,1);
subTimeStamp=TimeStamp(subtime-subsize:subtime+subsize,1);
subSampleTime=SampleTime(subtime-subsize:subtime+subsize,1);
subAvgData=AvgData(subtime-subsize:subtime+subsize,1);
subRawData=subBORData-subBiasData;
subRawError=subErrorData-subBiasData;

%Parameter limits ensure correct for location and unit being tested.
sd_hi=0.005;
sd_lo=0;
max_err=0.015;
max_adj=0.005;
lab_hi=0.8;
lab_lo=0.65;
Sim_trig_val=[0.014];
x_val=10;

%Simulated CUSUM variables
Sim_n_adj=0;
Sim_pos_sum=[0];
Sim_neg_sum=[0];
Sim_pos_cnt=0;
Sim_neg_cnt=0;
k=0.5; % Slack factor parameter
h=5; % Dynamic trigger parameter

% Initiate data arrays and variables
SimAvg=[AVG];
SimAv=AVG(1);
SimStd=[subStdData];
SimSd=Std(1);
datasize=size(subBORData);
datasize=datasize(1,1);
t=1:datasize;
LabSampleCount=0;
TempTime=' ';

ErrSum=0;
SimErrSum=0;
RawErrSum=0;
SimSdSum=0;
ErrCnt=0;
RawErrCnt=0;
SimErrCnt=0;
SimTrigCnt=0;
SimSdCnt=0;
ARLsum=0;

SimBias=[subBiasData(1)];
SimData=[subBORData];
Simavg=AVG;

i=1;

while i<datasize
 i=i+1;
 Sim_trig_val(i)=Sim_trig_val(i-1);
 Sim_pos_sum(i)=Sim_pos_sum(i-1);
 Sim_neg_sum(i)=Sim_neg_sum(i-1);

 %Test for new laboratory result
 if strcmp(subSampleTime(i),subSampleTime(i-1))==0
 %Set Sample Time seconds to :00
 TempTime=char(subSampleTime(i));
 TempTime=fliplr(TempTime);
 TempTime(4:6)=’00:’;
 TempTime=fliplr(TempTime);

 %Find online data at lab sample time
 n=1;
 while n<datasize
 n=n+1;
 if strcmp(TempTime,subTimeStamp(n))==1
 TestData=[SimData(n-x_val:n+x_val)];
 SimAv=mean(TestData);
 SimSd=std(TestData);
 SimErr=subLabData(i+2)-SimAv;
 RawErr=subLabData(i+2)-RawAVG(i);
ErrData = subLabData(i+2) - subAvgData(i+2);
LabSampleCount = LabSampleCount + 1;

% Average error calculations
if
 abs(ErrData) < max_err && SimSd < sd_hi && SimSd > sd_lo && subLabData(i) < lab_hi && subLabData(i+2) == subLabData(i+3)
 ErrCnt = ErrCnt + 1;
 ErrSum = ErrSum + abs(ErrData);
end
if
 abs(SimErr) < max_err && SimSd < sd_hi && SimSd > sd_lo && subLabData(i) < lab_hi && subLabData(i+2) == subLabData(i+3)
 RawErrSum = RawErrSum + abs(RawErr);
 RawErrCnt = RawErrCnt + 1;
end

% CUSUM calculation if parameters are within limits
if
 abs(SimErr) < max_err && SimSd < sd_hi && SimSd > sd_lo && subLabData(i) < lab_hi && subLabData(i+2) == subLabData(i+3)
 SimSdCnt = SimSdCnt + 1;
 SimSdSum = SimSdSum + SimSd;
 SimSdAvg = SimSdSum / SimSdCnt;
 Sim_trig_val(i) = h * SimSdAvg;
 Sim_pos_sum(i) = max(0, ((subLabData(i+2) - (k * SimSd)) - SimAv) + Sim_pos_sum(i-1));
 Sim_neg_sum(i) = min(0, ((subLabData(i+2) - (k * SimSd)) - SimAv) + Sim_neg_sum(i-1));
 SimErrSum = SimErrSum + abs(SimErr);
 SimErrCnt = SimErrCnt + 1;
else
 Sim_pos_sum(i) = Sim_pos_sum(i-1);
 Sim_neg_sum(i) = Sim_neg_sum(i-1);
 Sim_trig_val(i) = Sim_trig_val(i-1);
end

% Bias adjustment calculation
if Sim_pos_sum(i-1) > Sim_trig_val(i)
 Sim_n_adj = Sim_pos_sum(i) / (Sim_pos_cnt + 1);
 SimTrigCnt = SimTrigCnt + 1;
 ARLsum = ARLsum + Sim_pos_cnt;
elseif Sim_neg_sum(i-1) < ((-1) * Sim_trig_val(i))
 Sim_n_adj = Sim_neg_sum(i) / (Sim_neg_cnt + 1);
 SimTrigCnt = SimTrigCnt + 1;
 ARLsum = ARLsum + Sim_neg_cnt;
else
 Sim_n_adj = 0;
end

% CUSUM reset
if Sim_pos_sum(i-1) > Sim_trig_val(i) || Sim_neg_sum(i-1) < ((-1) * Sim_trig_val(i))
 Sim_pos_cnt = 0;
 Sim_neg_cnt = 0;
 Sim_pos_sum(i) = 0;
 Sim_neg_sum(i) = 0;
 SimSdCnt = 0;
SimSdSum=0;
elseif Sim_pos_sum(i-1)<Sim_trig_val(i) & Sim_neg_sum(i-1)>((-1)*Sim_trig_val(i))
 Sim_pos_cnt=Sim_pos_cnt+1;
 Sim_neg_cnt=Sim_neg_cnt+1;
end
if Sim_pos_sum(i)==0
 Sim_pos_cnt=0;
end
if Sim_neg_sum(i)==0
 Sim_neg_cnt=0;
end

% Adjustment limit
if Sim_n_adj>max_adj
 Sim_n_adj=max_adj;
end
if Sim_n_adj<((-1)*max_adj)
 Sim_n_adj=(-1)*max_adj;
end

% exit while loop
break
end
SimAvg(i)=SimAv;
SimStd(i)=SimSd;
end

else
 % Index arrays keeping last value if no change.
 Sim_n_adj=0;
 SimAvg(i)=SimAvg(i-1);
 SimStd(i)=SimStd(i-1);
end

% Update bias and bias corrected BOR
SimBias(i)=SimBias(i-1)+Sim_n_adj;
SimData(i)=subRawData(i)+SimBias(i);
end

% Calculate and display average errors
AvEr=ErrSum/ErrCnt;
SimAvEr=SimErrSum/SimErrCnt;
RawAvEr=RawErrSum/RawErrCnt;
ARL=ARLsum/SimTrigCnt;
T=table(AvEr,SimAvEr,RawAvEr,SimTrigCnt,LabSampleCount,ARL)

% Display file and parameters used
fprintf('File - %s : Unit - %s \n',filename,sheet);
fprintf('New CUSUM Parameters: k=%d, h=%d \n',k,h);

% Display program run time
runtime=toc;
fprintf('Program runtime = %0.0f minutes. \n',runtime/60);
tic
%Import data from Excel
%Manually enter "filename", "sheet" and "###_xlRange" variables.
filename = 'LOC1_BOR_2017.xlsx';
sheet = 'U1 BOR';
BORData_xlRange = 'B3:B362883';
BiasData_xlRange = 'D3:D362883';
StdData_xlRange = 'J3:J362883';
ErrorData_xlRange = 'I3:I362883';
LabData_xlRange = 'F3:F362883';
TimeStamp_xlRange = 'A3:A362883';
SampleTime_xlRange = 'E3:E362883';
AvgData_xlRange = 'G3:G362883';

BORData = xlsread(filename, sheet, BORData_xlRange);
BiasData = xlsread(filename, sheet, BiasData_xlRange);
StdData = xlsread(filename, sheet, StdData_xlRange);
ErrorData = xlsread(filename, sheet, ErrorData_xlRange);
LabData = xlsread(filename, sheet, LabData_xlRange);
[num, text, TimeStamp] = xlsread(filename, sheet, TimeStamp_xlRange);
[num2, text2, SampleTime] = xlsread(filename, sheet, SampleTime_xlRange);
AvgData = xlsread(filename, sheet, AvgData_xlRange);

%Create sub data arrays to target data of interest
Dsize = size(BORData);
Dsize = Dsize(1,1);
% subtime = Dsize/2;
% subsize = subtime - 2;
subtime = 35680;
subsize = 300;
subBORData = BORData(subtime-subsize:subtime+subsize,1);
subBiasData = BiasData(subtime-subsize:subtime+subsize,1);
subStdData = StdData(subtime-subsize:subtime+subsize,1);
subErrorData = ErrorData(subtime-subsize:subtime+subsize,1);
subLabData = LabData(subtime-subsize:subtime+subsize,1);
subTimeStamp = TimeStamp(subtime-subsize:subtime+subsize,1);
subSampleTime = SampleTime(subtime-subsize:subtime+subsize,1);
subAvgData = AvgData(subtime-subsize:subtime+subsize,1);
subRawData = subBORData - subBiasData;
subRawError = subErrorData - subBiasData;

%Parameter limits ensure correct for location and unit being tested.
sd_hi = 0.005;
sd_lo = 0;
max_err = 0.015;
max_adj = 0.005;
lab_hi = 0.8;
lab_lo = 0.65;
Sim_trig_val = [0.014];
x_val = 10;
Sim_n_adj = 0;
k = 1; % Error filter term parameter

% Initiate data arrays and variables
SimAvg = [AVG];
SimAv=AVG(1);
SimStd=[subStdData];
SimSd=Std(1);
datasize=size(subBORData);
datasize=datasize(1,1);
t=1:datasize;
LabSampleCount=0;
TempTime=' ';

SimError=[Error];
RawError=[Error];
ErrSum=0;
SimErrSum=0;
RawErrSum=0;
ErrCnt=0;
RawErrCnt=0;
SimErrCnt=0;
SimTrigCnt=0;

SimBias=[subBiasData(1)];
SimData=[subBORData];
Simavg=AVG;

i=1;
while i<datasize
 i=i+1;
 Sim_trig_val(i)=Sim_trig_val(i-1);

 %Test for new laboratory result
 if strcmp(subSampleTime(i),subSampleTime(i-1))==0
 TempTime=char(subSampleTime(i));
 TempTime=fliplr(TempTime);
 TempTime(4:6)='00:';
 TempTime=fliplr(TempTime);

 %Find online data at lab sample time
 n=1;
 while n<datasize
 n=n+1;
 if strcmp(TempTime,subTimeStamp(n))==1&&n>10
 TestData=[SimData(n-x_val:n+x_val)];
 SimAv=mean(TestData);
 SimSd=std(TestData);
 SimErr=subLabData(i+2)-SimAv;
 RawErr(i)=subLabData(i+2)-RawAVG(i);
 ErrData=subLabData(i+2)-subAvgData(i+2);
 LabSampleCount=LabSampleCount+1;

 %Average error calculations
 if abs(ErrData)<max_err&&SimSd<sd_hi&&SimSd>sd_lo&&subLabData(i)<lab_hi&&subLabData(i)>lab_lo&&subLabData(i+2)==subLabData(i+3)
 ErrCnt=ErrCnt+1;
 ErrSum=ErrSum+abs(ErrData);

 end

 end
 end
 end
end

%End for new laboratory result

if abs(SimErr)<max_err&&SimSd<sd_hi&&SimSd>sd_lo&&subLabData(i)<lab_hi&&subLabData(i)>lab_lo&&subLabData(i+2)==subLabData(i+3)
 RawErrSum=RawErrSum+abs(RawErr);
 RawErrCnt=RawErrCnt+1;
end

%CUSUM calculation if error and std are within limits
if abs(SimErr)<max_err&&SimSd<sd_hi&&SimSd>sd_lo&&subLabData(i)<lab_hi&&subLabData(i)>lab_lo&&subLabData(i+2)==subLabData(i+3)
 Sim_n_adj=k*SimErr;
 SimErrSum=SimErrSum+abs(SimErr);
 SimErrCnt=SimErrCnt+1;
else
 Sim_n_adj=0;
end

%Adjustment limit
if Sim_n_adj>max_adj
 Sim_n_adj=max_adj;
end
if Sim_n_adj<((1)*max_adj)
 Sim_n_adj=((1)*max_adj);
end

%exit while loop
break
end
SimAvg(i)=SimAv;
SimStd(i)=SimSd;
end

else
%Index arrays keeping last value if no change.
 SimError(i)=SimError(i-1);
 RawError(i)=RawError(i-1);
 Sim_n_adj=0;
 SimAvg(i)=SimAvg(i-1);
 SimStd(i)=SimStd(i-1);
end

%Update bias and bias corrected BOR
SimBias=SimBias+Sim_n_adj;
SimData(i)=subRawData(i)+SimBias;
end

%Calculate and display average errors
AvEr=ErrSum/ErrCnt;
CurrentAvEr=SimErrSum/SimErrCnt;
RawAvEr=RawErrSum/RawErrCnt;
T=table(AvEr,CurrentAvEr,RawAvEr,SimTrigCnt,LabSampleCount)

%Display file and parameters used
fprintf('File - %s : Unit - %s.
',filename,sheet);
fprintf('Error Filter Parameters: k=%d, Average Error=%d
',k,CurrentAvEr);
%Display program run time
runtime=toc;
fprintf('Program runtime = %0.0f minutes.\n', runtime/60);
tic

% Import data from Excel
% Manually enter "filename", "sheet" and "###_xlRange" variables.
filename='LOC1_BOR_2017.xlsx';
sheet='U1 BOR';
BORData_xlRange='B3:B362883';
BiasData_xlRange='D3:D362883';
StdData_xlRange='J3:J362883';
ErrorData_xlRange='I3:I362883';
LabData_xlRange='F3:F362883';
TimeStamp_xlRange='A3:A362883';
SampleTime_xlRange='E3:E362883';
AvgData_xlRange='G3:G362883';

BORData = xlsread(filename, sheet, BORData_xlRange);
BiasData = xlsread(filename, sheet, BiasData_xlRange);
StdData=xlsread(filename, sheet, StdData_xlRange);
ErrorData=xlsread(filename, sheet, ErrorData_xlRange);
LabData=xlsread(filename, sheet, LabData_xlRange);
[num,text,TimeStamp]=xlsread(filename, sheet, TimeStamp_xlRange);
[num2,text2,SampleTime]=xlsread(filename, sheet, SampleTime_xlRange);
AvgData=xlsread(filename, sheet, AvgData_xlRange);

% Create sub data arrays to target data of interest
Dsize=size(BORData);
Dsize=Dsize(1,1);
% subtime=Dsize/2;
% subsize=subtime-2;
subtime=86400;
subsize=300;
subBORData=BORData(subtime-subsize:subtime+subsize,1);
subBiasData=BiasData(subtime-subsize:subtime+subsize,1);
subStdData=StdData(subtime-subsize:subtime+subsize,1);
subErrorData=ErrorData(subtime-subsize:subtime+subsize,1);
subLabData=LabData(subtime-subsize:subtime+subsize,1);
subTimeStamp=TimeStamp(subtime-subsize:subtime+subsize,1);
subSampleTime=SampleTime(subtime-subsize:subtime+subsize,1);
subAvgData=AvgData(subtime-subsize:subtime+subsize,1);
subRawData=subBORData-subBiasData;
subRawError=subErrorData-subBiasData;

% Parameter limits ensure correct for location and unit being tested.
sd_hi=0.005;
sd_lo=0;
max_err=0.015;
max_adj=0.005;
lab_hi=0.8;
lab_lo=0.65;
Sim_trig_val=[0.014];
x_val=10;

% Simulated CUSUM variables
Sim_n_adj=0;
Sim_pos_sum=[0];
Sim_neg_sum=[0];
Sim_pos_cnt=0;
Sim_neg_cnt=0;
FIR=0.5; % 50% head start Fast Initial Response parameter

% Initiate data arrays and variables
SimAvg=[AVG];
SimAv=AVG(1);
SimStd=[subStdData];
SimSd=Std(1);
datasize=size(subBORData);
datasize=datasize(1,1);
t=1:datasize;
LabSampleCount=0;
TempTime=' ';

SimError=[Error];
ErrSum=0;
SimErrSum=0;
RawErrSum=0;
ARLsum=0;
ErrCnt=0;
RawErrCnt=0;
SimErrCnt=0;
SimTrigCnt=0;

SimBias=[subBiasData(1)];
SimData=[subBORData];
Simavg=AVG;

i=1;
TestSampleCount=0;
while i<datasize
 i=i+1;
 Sim_trig_val(i)=Sim_trig_val(i-1);
 Sim_pos_sum(i)=Sim_pos_sum(i-1);
 Sim_neg_sum(i)=Sim_neg_sum(i-1);

 % Test for lab sample
 if strcmp(subSampleTime(i),subSampleTime(i-1))==0
 % Set Sample Time seconds to :00
 TempTime=char(subSampleTime(i));
 TempTime=fliplr(TempTime);
 TempTime(4:6)='00: '
 TempTime=fliplr(TempTime);
 TestSampleCount=TestSampleCount+1;

 % Find online data at lab sample time
 n=1;
 while n<datasize
 n=n+1;
 if strcmp(TempTime,subTimeStamp(n))==1
 if n>10
 TestData=[SimData(n-x_val:n+x_val)];
 else
 TestData=[SimData(1:n+x_val)];
 end
 SimAv=mean(TestData);
SimSd=std(TestData);
CurrentErr=subLabData(i+2)-SimAv;
SimError(i)=subLabData(i+2)-SimAv;
RawErr=subLabData(i+2)-RawAVG(i);
ErrData=subLabData(i+2)-subAvgData(i+2);
LabSampleCount=LabSampleCount+1;

%Average error calculations
if
abs(ErrData)<max_err&&SimSd<sd_hi&&SimSd>sd_lo&&subLabData(i)<lab_hi&&subLabData(i)>lab_lo&&subLabData(i+2)==subLabData(i+3)
 ErrCnt=ErrCnt+1;
 ErrSum=ErrSum+abs(ErrData);
end
if
abs(CurrentErr)<max_err&&SimSd<sd_hi&&SimSd>sd_lo&&subLabData(i)<lab_hi&&subLabData(i)>lab_lo&&subLabData(i+2)==subLabData(i+3)
 RawErrSum=RawErrSum+abs(RawErr);
 RawErrCnt=RawErrCnt+1;
end

%CUSUM calculation if error and std are within limits
if
abs(CurrentErr)<max_err&&SimSd<sd_hi&&SimSd>sd_lo&&subLabData(i)<lab_hi&&subLabData(i)>lab_lo&&subLabData(i+2)==subLabData(i+3)
 Sim_pos_sum(i)=max(0,Sim_pos_sum(i-1)+CurrentErr);
 Sim_neg_sum(i)=min(0,Sim_neg_sum(i-1)+CurrentErr);
 SimErrSum=SimErrSum+abs(CurrentErr);
 SimErrCnt=SimErrCnt+1;
else
 Sim_pos_sum(i)=Sim_pos_sum(i-1);
 Sim_neg_sum(i)=Sim_neg_sum(i-1);
end

%Bias adjustment calculation
if
Sim_pos_sum(i-1)>Sim_trig_val(i)
 Sim_n_adj=Sim_pos_sum(i)/(Sim_pos_cnt+1);
 SimTrigCnt=SimTrigCnt+1;
 ARLsum=ARLsum+Sim_pos_cnt;
elseif Sim_neg_sum(i-1)<((-1)*Sim_trig_val(i))
 Sim_n_adj=Sim_neg_sum(i)/(Sim_neg_cnt+1);
 SimTrigCnt=SimTrigCnt+1;
 ARLsum=ARLsum+Sim_neg_cnt;
else
 Sim_n_adj=0;
end

%CUSUM reset
if
Sim_pos_sum(i-1)>Sim_trig_val(i) || Sim_neg_sum(i-1)<((-1)*Sim_trig_val(i))
 Sim_pos_cnt=0;
 Sim_neg_cnt=0;
 Sim_pos_sum(i)=Sim_trig_val(i)*FIR;
 Sim_neg_sum(i)=(-1)*Sim_trig_val(i)*FIR;
elseif Sim_pos_sum(i-1)<Sim_trig_val(i) && Sim_neg_sum(i-1)>((-1)*Sim_trig_val(i))
 Sim_pos_cnt=Sim_pos_cnt+1;
 Sim_neg_cnt=Sim_neg_cnt+1;
end
if Sim_pos_sum(i)==0
 Sim_pos_cnt=0;
end
if Sim_neg_sum(i)==0
 Sim_neg_cnt=0;
end

%Adjustment limit
if Sim_n_adj>max_adj
 Sim_n_adj=max_adj;
end
if Sim_n_adj<((-1)*max_adj)
 Sim_n_adj=(-1)*max_adj;
end

%exit while loop
break
end
SimAvg(i)=SimAv;
SimStd(i)=SimSd;
end

else
%Index arrays keeping last value if no change.
 SimError(i)=SimError(i-1);
 Sim_n_adj=0;
 SimAvg(i)=SimAvg(i-1);
 SimStd(i)=SimStd(i-1);
end

%Update bias and bias corrected BOR
 SimBias(i)=SimBias(i-1)+Sim_n_adj;
 SimData(i)=subRawData(i)+SimBias(i);
end

%Calculate and display average errors
AvEr=ErrSum/ErrCnt;
CurrentAvEr=SimErrSum/SimErrCnt;
RawAvEr=RawErrSum/RawErrCnt;
ARL_Avg=ARLsum/SimTrigCnt;
T=table(AvEr,CurrentAvEr,RawAvEr,SimTrigCnt,LabSampleCount,ARL_Avg)

%Display file and parameters used
fprintf('File - %s : Unit - %s.\n',filename,sheet);
fprintf('Current CUSUM Parameters: trig_val=%d, max_error=%d\n',Sim_trig_val(1),max_err);

%Display program run time
runtime=toc;
fprintf('Program runtime = %0.0f minutes.\n',runtime/60);
A2.6 Shewhart/CUSUM Simulation code

tic
%Import data from Excel
%Manually enter "filename", "sheet" and "###_xlRange" variables.
filename='LOC1_BOR_2017.xlsx';
sheet='U1 BOR';
BORData_xlRange='B3:B362883';
BiasData_xlRange='D3:D362883';
StdData_xlRange='J3:J362883';
ErrorData_xlRange='I3:I362883';
LabData_xlRange='F3:F362883';
TimeStamp_xlRange='A3:A362883';
SampleTime_xlRange='E3:E362883';
AvgData_xlRange='G3:G362883';

BORData = xlsread(filename, sheet, BORData_xlRange);
BiasData = xlsread(filename, sheet, BiasData_xlRange);
StdData=xlsread(filename, sheet, StdData_xlRange);
ErrorData=xlsread(filename, sheet, ErrorData_xlRange);
LabData=xlsread(filename, sheet, LabData_xlRange);
[num,text,TimeStamp]=xlsread(filename, sheet, TimeStamp_xlRange);
[num2,text2,SampleTime]=xlsread(filename, sheet, SampleTime_xlRange);
AvgData=xlsread(filename, sheet, AvgData_xlRange);

%Create sub data arrays to target data of interest
Dsize=size(BORData);
Dsize=Dsize(1,1);

% subtime=Dsize/2;
% subsize=subtime

subtime=86400;
subsize=300;
subBORData=BORData(subtime-subsize:subtime+subsize,1);
subBiasData=BiasData(subtime-subsize:subtime+subsize,1);
subStdData=StdData(subtime-subsize:subtime+subsize,1);
subErrorData=ErrorData(subtime-subsize:subtime+subsize,1);
subLabData=LabData(subtime-subsize:subtime+subsize,1);
subTimeStamp=TimeStamp(subtime-subsize:subtime+subsize,1);
subSampleTime=SampleTime(subtime-subsize:subtime+subsize,1);
subAvgData=AvgData(subtime-subsize:subtime+subsize,1);
subRawData=subBORData-subBiasData;
subRawError=subErrorData-subBiasData;

%Parameter limits ensure correct for location and unit being tested.
sd_hi=0.005;
sd_lo=0;
max_err=0.015;
max_adj=0.005;
lab_hi=0.8;
lab_lo=0.65;
Cu_trig_val=[0.014];
Sw_trig_val=[0.0098];
x_val=10;
Sim_n_adj=0;

%Simulated CUSUM variables
Sim_pos_sum=[0];
Sim_neg_sum=[0];
Sim_pos_cnt=0;
Sim_neg_cnt=0;
k=0; % CUSUM slack factor parameter
h=5; % CUSUM trigger parameter
SWh=3.5; % Shewhart trigger parameter

% Initiate data arrays and variables
SimErr=[Error];
SimAvg=[AVG];
SimAv=AVG(1);
SimStd=[subStdData];
SimSd=Std(1);
datasize=size(subBORData);
datasize=datasize(1,1);
t=1:datasize;
LabSampleCount=0;
TempTime=' ';

ErrSum=0;
SimErrSum=0;
RawErrSum=0;
SimSdSum=0;
ErrCnt=0;
RawErrCnt=0;
SimErrCnt=0;
SimTrigCnt=0;
SimSdCnt=0;
ARLsum=0;

SimBias=[subBiasData(1)];
SimData=[subBORData];
Simavg=AVG;
SimSdR=[1];

i=1;
while i<datasize
 i=i+1;
 Cu_trig_val(i)=Cu_trig_val(i-1);
 Sw_trig_val(i)=Sw_trig_val(i-1);
 Sim_pos_sum(i)=Sim_pos_sum(i-1);
 Sim_neg_sum(i)=Sim_neg_sum(i-1);

 % Test for new laboratory result
 if strcmp(subSampleTime(i),subSampleTime(i-1))==0
 % Set Sample Time seconds to :00
 TempTime=char(subSampleTime(i));
 TempTime=fliplr(TempTime);
 TempTime(4:6)='00:';
 TempTime=fliplr(TempTime);
 % Find online data at lab sample time
 n=1;
 while n<datasize
 n=n+1;
 end;
if strcmp(TempTime, subTimeStamp(n)) == 1
 TestData = [SimData(n-x_val:n+x_val)];
 SimAv = mean(TestData);
 SimSd = std(TestData);
 SimErr(i) = subLabData(i+2) - SimAv;
 RawErr = subLabData(i+2) - RawAVG(i);
 ErrData = subLabData(i+2) - subAvgData(i+2);
 LabSampleCount = LabSampleCount + 1;

 % Average error calculations
 if abs(ErrData) < max_err && SimSd < sd_hi && SimSd > sd_lo && subLabData(i+2) < lab_hi && subLabData(i) > lab_lo && subLabData(i+2) == subLabData(i+3)
 ErrCnt = ErrCnt + 1;
 ErrSum = ErrSum + abs(ErrData);
 end
 if abs(SimErr(i)) < max_err && SimSd < sd_hi && SimSd > sd_lo && subLabData(i) > lab_hi && subLabData(i+2) == subLabData(i+3)
 RawErrSum = RawErrSum + abs(RawErr);
 RawErrCnt = RawErrCnt + 1;
 end

 % Shewhart and CUSUM calculation if parameters are within limits
 if abs(SimErr(i)) < max_err && SimSd < sd_hi && SimSd > sd_lo && subLabData(i) > lab_hi && subLabData(i+2) == subLabData(i+3)
 SimSdCnt = SimSdCnt + 1;
 SimSdSum = SimSdSum + SimSd;
 SimSdAvg = SimSdSum / SimSdCnt;
 Cu_trig_val(i) = h * SimSdAvg;
 Sw_trig_val(i) = SW * SimSdAvg;
 Sim_pos_sum(i) = max(0, ((subLabData(i+2) - (k * SimSd)) - SimAv) + Sim_pos_sum(i-1));
 Sim_neg_sum(i) = min(0, ((subLabData(i+2) - (k * SimSd)) - SimAv) + Sim_neg_sum(i-1));
 SimErrSum = SimErrSum + abs(SimErr(i));
 SimErrCnt = SimErrCnt + 1;
 else
 Sim_pos_sum(i) = Sim_pos_sum(i-1);
 Sim_neg_sum(i) = Sim_neg_sum(i-1);
 Cu_trig_val(i) = Cu_trig_val(i-1);
 Sw_trig_val(i) = Sw_trig_val(i-1);
 end

 % Bias adjustment calculation
 if SimErr(i-1) > Sw_trig_val(i)
 Sim_n_adj = SimErr(i);
 SimTrigCnt = SimTrigCnt + 1;
 ARLsum = ARLsum + 1;
 elseif SimErr(i-1) <= ((-1) * Sw_trig_val(i))
 Sim_n_adj = SimErr(i);
 SimTrigCnt = SimTrigCnt + 1;
 ARLsum = ARLsum + 1;
 elseif Sim_pos_sum(i-1) > Cu_trig_val(i)
 Sim_n_adj = Sim_pos_sum(i) / (Sim_pos_cnt + 1);
 SimTrigCnt = SimTrigCnt + 1;
 ARLsum = ARLsum + Sim_pos_cnt;
elseif Sim_neg_sum(i-1)<((-1)*Cu_trig_val(i))
 Sim_n_adj=Sim_neg_sum(i)/(Sim_neg_cnt+1);
 SimTrigCnt=SimTrigCnt+1;
 ARLsum=ARLsum+Sim_neg_cnt;
else
 Sim_n_adj=0;
 Sim_pos_cnt=Sim_pos_cnt+1;
 Sim_neg_cnt=Sim_neg_cnt+1;
end

% Shewhart and CUSUM reset
if Sim_pos_sum(i-1)>Cu_trig_val(i)||Sim_neg_sum(i-1)<((-1)*Cu_trig_val(i-1))||SimErr(i)>Sw_trig_val(i)||SimErr(i-1)<((-1)*Sw_trig_val(i))
 Sim_pos_cnt=0;
 Sim_neg_cnt=0;
 Sim_pos_sum(i)=0;
 Sim_neg_sum(i)=0;
 SimSdCnt=0;
 SimSdSum=0;
end
if Sim_pos_sum(i)==0
 Sim_pos_cnt=0;
end
if Sim_neg_sum(i)==0
 Sim_neg_cnt=0;
end

% Adjustment limit
if Sim_n_adj>max_adj
 Sim_n_adj=max_adj;
end
if Sim_n_adj<((-1)*max_adj)
 Sim_n_adj=(-1)*max_adj;
end

% Exit while loop
break
end
SimAvg(i)=SimAv;
SimStd(i)=SimSd;
end
else

% Index arrays keeping last value if no change.
SimErr(i)=SimErr(i-1);
Sim_n_adj=0;
SimAvg(i)=SimAvg(i-1);
SimStd(i)=SimStd(i-1);
end

% Update bias and bias corrected BOR
SimBias(i)=SimBias(i-1)+Sim_n_adj;
SimData(i)=subRawData(i)+SimBias(i);

% Calculate and display average errors
AvEr=ErrSum/ErrCnt;
NewAvEr=SimErrSum/SimErrCnt;
RawAvEr=RawErrSum/RawErrCnt;
ARL=ARLsum/SimTrigCnt;
T=table(AvEr,NewAvEr,RawAvEr,SimTrigCnt,LabSampleCount,ARL)

%fDisplay file and parameters used
fprintf('File - %s : Unit - %s
',filename,sheet);
fprintf('New CUSUM Parameters: k=%d, h=%d
',k,h);

%Display program run time
runtime=toc;
fprintf('Program runtime = %0.0f minutes.
',runtime/60);