Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Recycling of zincite (ZnO) via uptake of hydrogen halides

Ahmed, O.H., Altarawneh, M.ORCID: 0000-0002-2832-3886, Al-Harahsheh, M., Jiang, Z-T and Dlugogorski, B.Z. (2018) Recycling of zincite (ZnO) via uptake of hydrogen halides. Physical Chemistry Chemical Physics, 20 (2). pp. 1221-1230.

Link to Published Version:
*Subscription may be required


Hydrogen halides (HCl/HBr) represent major halogen fragments from the thermal decomposition of halogen laden materials, most notably PVC and brominated flame retardants (BFRs). Co-pyrolysis of halogen-containing solid waste with metal oxides is currently deployed as a mainstream strategy to treat halogen content as well as to recycle the valuable metallic fraction embedded in electric arc furnace dust (EAFD) and e-waste. However, designing an industrial-scale recycling facility necessitates accurate knowledge on mechanistic and thermo-kinetic parameters dictating the interaction between metal oxides and hydrogen halides. In this contribution, we investigate chemical interplay between HCl/HBr and zincite surfaces as a representative model for structures of zinc oxides in EAFD by using different sets of functionals, unit cell size and energy cut-off. In the first elementary step, dissociative adsorption of the HCl/HBr molecules affords oxyhalide structures (Cl/Br–Zn, H–O) via modest activation barriers. Conversion of the oxyhalide structure into zinc halides occurs through two subsequent steps, further dissociative adsorption of HCl/Br over the same surface Zn atom as well as the release of a H2O molecule. Evaporation (or desorption of zinc halide molecules) signifies a bottleneck for the overall halogenation of ZnO. Our simplified kinetic model on the HCl + ZnO system concurs very well with experimentally reported TGA weight loss profiles on two grounds: accumulation of oxyhalides until ∼700 K and desorption of ZnCl2 at higher temperatures. The thermo-kinetic and mechanistic aspects reported herein could be useful in the pursuit of a design of a large-scale catalytic upgrading unit that operates to extract valuable zinc loads from EAFD.

Item Type: Journal Article
Murdoch Affiliation(s): School of Engineering and Information Technology
Publisher: Royal Society of Chemistry
Copyright: © 2018 Royal Society of Chemistry
Item Control Page Item Control Page