Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Applied novel software development methodology for process engineering application

Sadrieh, Afshin (2017) Applied novel software development methodology for process engineering application. PhD thesis, Murdoch University.

PDF - Whole Thesis
Download (6MB) | Preview


Chemical processes are nonlinear continuous/discrete dynamic systems that are subject to considerable uncertainties and variations during their design and operation. These systems are designed to operate at an economically optimal steady-state. However, minor changes in process parameters’ values might cause deviations and elicit dynamic responses from processes. Controllability—defined as the ability of holding a process within a specified operating regime and the controllability assessment of each given process system—should be taken into account during the system design phase. This emphasises the necessity of effective software tools that could assist process engineers in their controllability evaluation.

Although there are few multipurpose tools available for this task, developing software tools for controllability analysis is a tedious and sophisticated undertaking. It involves elaboration from multiple disciplines, and the requirements of controllability assessments are so vast that it is almost impossible to create general software that covers all controllability measures and cases.
This thesis aims to systematically tackle the challenge of developing practical and high-quality software tools for controllability problems while reducing the required time and effort, regardless of the size and scale of the controllability problem.

Domain-specific language (DSL) methodology is proposed for this purpose. DSLs are programming languages designed to address the programming problems of a specific domain. Therefore, well-designed DSLs are simple, easy to use and capable of solving any problem defined in their domains. Based on DSL methodology, this study proposes a four-element framework to partition the software system into decoupled elements, and discusses the design and implementation steps of each element as well as communication between elements. The superiority of the developed methodology based on DSL is compared with traditional programming techniques for controllability assessment of various case studies.

Essentially, the major advantage of the proposed methodology is the performance of the software product. Performance measures used in this study are total time to develop (TD) the software tool and its modifiability. Total time and effort to implement and use the result products presents up to five times improvement. Moreover, the result product’s modifiability is assessed by applying modifications, which also demonstrates up to five times improvement. All measures are tested on continuous stirred-tank reaction (CSTR) and forced-circulation evaporator (FCE) case studies.

In conclusion, this study significantly contributes to two fields. The first is DSL, since this thesis studies different types of DSLs and evaluates their applications in the controllability analysis. The second is the controllability evaluation, since this study examines a new methodology for software development in controllability assessment.

Item Type: Thesis (PhD)
Murdoch Affiliation: School of Engineering and Information Technology
Supervisor(s): Bahri, Parisa
Item Control Page Item Control Page


Downloads per month over past year