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Highlights

• We propose a new algorithm for the problem of reverse engineering an indeterminate string from an arbitrary undirected graph.
• Our algorithm is simple and faster than other algorithms, though it yields larger alphabets.
• We clarify the interconnections between clique covers, intersection numbers and alphabet sizes for indeterminate strings.
• We have created a software suite for running experiments, and we present several experimental results in the paper.
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Abstract. As discussed at length in [Christodoulakis et al., Indeter-
minate strings, prefix arrays and undirected graphs, Theoret.
Comput. Sci. 600–4 (2015)], there is a natural one-many correspondence
between simple undirected graphs G with vertex set V = {1, 2, . . . , n}
and indeterminate strings x = x[1..n] — that is, sequences of subsets
of some alphabet Σ. In this paper, given G, we consider the “reverse
engineering” problem of computing a corresponding x on an alphabet
Σmin of minimum cardinality. This turns out to be equivalent to the
NP-hard problem of computing the intersection number of G, thus in
turn equivalent to the clique cover problem. We describe a heuristic al-
gorithm that computes an approximation to Σmin and a corresponding
x. We give various properties of our algorithm, including some experi-
mental evidence that on average it requiresO(n2 log n) time. We compare
it with other heuristics, and state some conjectures and open problems.

Keywords: String Algorithms; Indeterminate Strings; Cliques;
Graph Labeling

1 Introduction

In this paper we seek to extend the connections between graph the-
ory and stringology explored in [3]. We consider a string x = x[1..n]
to be a sequence of letters x[i], 1 ≤ i ≤ n, that are nonempty sub-
sets of a given finite set Σ, called the alphabet. If x[i] is a subset of
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cardinality 1, it is said to be a regular letter; otherwise, indeter-
minate. Similarly, if x contains only regular letters, it is said to be
regular ; otherwise, indeterminate. For example, on Σ = {a, b, c},
x = ababc is regular4, while y = {a, b}ba{b, c}b is indeterminate. In-
determinate strings are useful in various application areas, notably
bioinformatics, where under certain circumstances DNA sequences
can be regarded as indeterminate strings on nucleotides {a, c, g, t}.
In recent years indeterminate strings have been the subject of much
study [12, 11, 17, 1].

Given string x = x[1..n], we say that for 1 ≤ i, j ≤ n, x[i]
matches x[j] (written x[i] ≈ x[j]) if and only if x[i] ∩ x[j] �= ∅.
Thus in particular x[i] = x[j] =⇒ x[i] ≈ x[j]. As defined in [3], the
associated graph Gx = (Vx, Ex) of x is the simple graph whose
vertices are positions 1, 2, . . . , n in x and whose edges are the pairs
(i, j) such that x[i] ≈ x[j]. Suppose that for some position i0 ∈ 1..n,
x[i0] matches x[i1],x[i2], . . . ,x[ik] for some k ≥ 0, and matches no
other elements of x. We say that position i0 is essentially regu-
lar if and only if the entries in positions i1, i2, . . . , ik match each
other pairwise. If every position in x is essentially regular, we say
that x itself is essentially regular. Hence every essentially regular
string can be replaced by an equivalent regular one, and the associ-
ated graph Gx is a collection of disjoint cliques if and only if x is
essentially regular.

For general indeterminate strings, however, Gx is more interest-
ing. In Section 2 we discuss a conjecture stated in [3], that given
a finite simple graph G whose maximal cliques have basis B, |B| is
the minimum alphabet size of any string x whose associated graph
Gx = G. We discover that this conjecture is just a reformulation, in
a slightly different context, of the problem of computing the inter-
section number of G, which is NP-hard, and hence computing the
minimum alphabet size of any string is also NP-hard. Section 3 de-
scribes an algorithm that approximates a basis of G by assigning
symbols to the vertices of cliques until all vertices are labeled, thus
effectively computing a string x whose associated graph Gx = G.
This is an example of the “reverse engineering” of a data structure,
a class of problems initiated in [8, 7] for the border array, and ex-

4 For singleton sets such as {a}, {b}, {c}, we write a, b, c for simplicity.



tended to other structures in, for example, [2, 9, 4]. In Section 4 we
discuss our algorithm’s results and execution, especially in the con-
text of other algorithms that perform closely-related computations.
Section 5 discusses a few conjectures and open problems.

2 Maximal Cliques in the Associated Graph Gx
Suppose a collection F = F1, F2, . . . , Fn of sets is given. Then the
intersection graph GF of F is a simple undirected graph on |F| =
n vertices 1, 2, . . . , n, with an edge (i, j), 1 ≤ i, j ≤ n, if and only
if Fi ∩ Fj �= ∅. Conversely, it was shown in [18] that, given a simple
undirected graph G on vertices 1, 2, . . . , n, a collection F of n sets can
be found such that G is the intersection graph of F . (For example, for
each (i, j) in G, i < j, place a unique symbol λi,j in Fi and Fj.) The
intersection number θ(G) of G is the smallest number of distinct
symbols that can be placed in the sets of F such that G = GF .
In our application, the collection F becomes a string x = x[1..n]
with x[i] = Fi (necessarily nonempty). The associated graph and
the intersection graph are thus the same, and we seek a smallest
alphabet Σmin that produces it. Let σmin = |Σmin|, the cardinality
of such an alphabet.

The standard way of efficiently representing a finite simple graph
G as an intersection graph is by covering the graph by cliques. Take
any set of cliques covering all edges of G. For each vertex v, let Fv

be the set of those cliques containing the vertex v. Then the inter-
section graph of {Fv} coincides with G. As a result, the intersection
number θ(G) is equal to the edge clique cover number ec(G), the
cardinality of a minimum size set of the cliques that covers all the
edges of G. Erdős et al. [6, 16] proved that θ(G) ≤ 
n2/4�, an upper
bound that is achieved when G is a triangle-free graph on 
n2/4�
edges [15]. An instructive example is given by the complete bipartite
graphs Km,m (for even n = 2m) and Km,m+1 (for odd n = 2m + 1)
for which the minimal covering by cliques consists of all edges, the
number of which is precisely 
n2/4�.

Erdős et al. use coverings that cover all vertices as well as all
edges. If G has no isolated points, this is equivalent to the “edge
covering” approach discussed above. For this case, they prove that



ec(G) ≤ 
n2/4� and that one need only use 2-cliques and 3-cliques
(edges and triangles) in a minimal covering.5

More recently, Conjecture 21 in [3] formulated the problem in a
slightly different way, in terms of the maximal cliques in G; that is,
those that are not proper subgraphs of any other clique. We provide
here a proof of this conjecture, thus validating the several following
remarks made in that paper. To be consistent with [3], we use the
notion of basis. A basis is a minimum size set of maximal cliques
that covers all edges and all vertices of G.

Lemma 1 Suppose that a finite simple graph G with vertex set V =
{1, 2, . . . , n} has a basis B of maximal cliques of cardinality σmin.
Then there is a string x on a base alphabet of size σmin whose as-
sociated graph Gx = G. No string on a smaller alphabet has this
property.

Proof. Let B = {C1, C2, . . . , Cσ}. Let {λs}σs=1 be distinct letters.
We construct a string x as follows. For each ordered pair (s, i) with
1 ≤ s ≤ σ and 1 ≤ i ≤ n, assign λs to x[i] if vertex i occurs in the
maximal clique Cs. It is clear from the definitions that the string x
so constructed satisfies Gx = G.

Now consider any string x of length n for which Gx = G and
let τ be the number of distinct (ordinary) letters occurring in x. For
each such letter λ, there is a clique Cλ of G whose vertices are those i
for which λ ∈ x[i]. Of course, these cliques may not be maximal, but
each Cλ can be extended to a maximal clique C ′

λ. Note that every
vertex and edge of G occurs in one of the cliques Cλ and a fortiori
in one of the maximal cliques C ′

λ. However, the C ′
λ might not all

be distinct. Let τ ′ be the number of distinct C ′
λ. Then τ ≥ τ ′ ≥ σ,

the latter inequality following from the fact that there is a basis of
cardinality σmin. This shows that τ cannot be less than σmin and
completes the proof.

It turns out that maximality is irrelevant in the specification of
basis. Let φ′(G) be the cardinality of a basis (of maximal cliques) in

5 The authors thank an anonymous referee who drew their attention to the available
material on intersection graphs and clique edge covers.



G and let φ(G) be the cardinality of a smallest set of cliques that
cover all edges and vertices of G. Then:
Observation 2 φ′(G) = φ(G).
Proof. If φ′(G) < φ(G), then φ(G) cannot be minimum, a contradic-
tion. Suppose then that φ(G) < φ′(G). This requires that the min-
imum covering φ includes cliques that are not maximal. But these
cliques can be extended to become maximal cliques, so that there-
fore there is minimum covering by maximal cliques that is less than
φ′, again a contradiction.

For graphs with no isolated vertices, every edge-covering by cliques
also covers all vertices. When there are isolated vertices, we need an
additional clique for each. Thus we have the following:

Observation 3 Let G be a finite simple graph with d vertices of
degree 0. Then

σmin = φ(G) = ec(G) + d.

It is well known [14, 10] that computing θ(G) is NP-hard, thus
so also is the computation of σmin = θ(G) + d. In the next section
we describe a heuristic algorithm to compute an approximation of
σmin.

3 Graph Labeling Algorithm

Our algorithm accepts as input a graph G, and outputs a labeling
that respects its edge relations, thus effectively producing an x such
that Gx = G. The algorithm works by exploring maximal cliques,
and assigning all the vertices in a given clique the same symbol; as
in general vertices may be located in several cliques, they may get
several labels.

We want the labeling to be as frugal as possible, but since the
computation is NP-hard, we cannot of course expect a minimum la-
belling. Nevertheless, Algorithm 1 is simple, and performs well in
practice, as we discuss below. Essentially, it runs three nested loops:
all vertices v, then all vertices w adjacent to v, and finally all ver-
tices q adjacent to both v and w and previous q’s. For these latter



vertices q we apply a crucial heuristic that reduces dramatically the
number of labels required for most graphs: we consider them in non-
decreasing order l(q) of already-assigned labels, as discussed below.
For an example of Algorithm 1’s execution, see Figure 1.

Algorithm 1 Given the adjacency lists of the n vertices of G, com-
pute a set of cliques that cover G so that each vertex i has a set of
labels (symbols) specifying a corresponding string entry x[i].

1: procedure LabelGraph(v.adj,n:v.label)
2: λ ← 1
3: for v ← 1 to n do
4: if v.deg = 0 then
5: v.label ← {λ}
6: λ ← λ+ 1
7: else
8: for all w ∈ v.adj do
9: if v.label ∩ w.label = ∅ then

10: v.label ← v.label ∪ {λ}
11: w.label ← w.label ∪ {λ}
12: clique ← {w}
13: for all q ∈ v.adj − {w} do
14: if clique ⊆ q.adj then
15: q.label ← q.label ∪ {λ}
16: clique ← clique ∪ {q}
17: λ ← λ+ 1

First we examine the running time of Algorithm 1, showing that
on the surface the run time is O(n6), but with some simple tweaks
this can be improved and brought down to O(n4). We have nested
loops in lines 3,8,13, together with implied loops in lines 9,14, where
each line costs O(n), except line 9 where we have to check if among all
labels (at most O(n2) of them) v, w share one. Thus the cost of line 9
is O(n2). Line 14 contributes in a similar manner, in that we have to
make sure that all the vertices in the clique (at most O(n) of them)
are in the adjacency list of vertex q. Further, as noted above, line 13
is executed in l(q) order; that is, in non-decreasing order of number



of labels already assigned to the vertices q. Thus v.adj − {w} needs
to be sorted before the execution of line 13, a process that requires
O(n log n) steps in the worst case, less than that required by lines
13 and 14, thus a negligible time penalty. The worst-case bound
therefore remains at O(n6), but in practice the algorithm runs much
faster (in Section 4 we we conjecture in O(n2logn) steps on average
over constant graph density).

Run time is also affected by other design decisions related to data
structures and optimizations used. On lines 10, 11 and 15, instead
of adding labels to a resulting set of labels for each vertex, vertex-
label pairs (v, λ) could have instead been stored in a list, then at
the end of the v-loop radix-sorted and merged into the final output.
This would have avoided the difficulty resulting from the fact that a
single vertex could be an entry in as many as n−1 cliques. Instead we
used dynamically expanding arrays to keep track of labels, a decision
that, except for pathological cases, turns out to have little impact
on processing time.

However, we can certainly improve the upper bound to O(n4) by
counting more carefully and by modifying the algorithm slightly, to
amortize the cost of line 9. The point to note is that to compute 9 we
do not need to find the particular label that v, w share in common,
but only check whether such a label exists.

Instead we check whether v, w share a label by maintaining a 0-1
matrix M which has a 1 in position (v, w) if and only if v.label ∩
w.label �= ∅ (and so in line 9 of the algorithm we only check if
Mvw �= 1, which can be done in one step). Of course, there will be an
added cost of maintaining the matrix M , an overall cost of O(n4),
which can be amortized in the total runtime of the algorithm. In
order to maintain M , we add a couple of lines after line 17, with the
same indentation as line 17, which set Mvw = 1,Mvq = 1,Mwq = 1,
and all the corresponding entries reflected along the main diagonal
(as the graph is undirected), for all w, q in the clique where w �= q.
This takes at most O(n2) steps.

Now, each entry (u, v) in the matrix M may stay zero throughout
(if u, v are not adjacent), or be changed to 1 once or repeatedly. Note
that each entry that is turned to 1 will be turned to 1 at most O(n2)
times as that is the maximum number of cliques produced by the
algorithm (according to our Remark 6), and any entry (u, v) will be



turned to 1 as many times as the number of different cliques that
contain edge (u, v).

This means that updating matrix M cannot cost more than
O(n4), the desired running time of the entire algorithm. This to-
tal can be amortized over the entire run, so that the maintenance of
matrix M does not increase the running time of the algorithm, while
it allows line 9 to be counted as a single step. Hence:

Lemma 4 The worst-case running time of Algorithm 1 is O(n4).

1

2

3

4

Fig. 1. Algorithm 1 begins with λ ← 1 and will first select v1 as v
on line 3. Since v.deg �= 0, v2 will be selected as the first w, so that
the test in line 9 passes, λ is added to v.label and w.label, and clique
replaced by w. Line 13 will select v4 as q, and the test on line 14 will
pass, adding λ to q.label and q to clique. The loop on line 13 ends
and λ is incremented. v4 is the next w, but the check on line 9 will
now fail, so v2 is the next v. The test on line 9 will fail with w = v1,
but pass with w = v3. λ = 2 is added to v.label and w.label. v1 and
v4 as q will fail the test on line 14. v3 and v4 as v will fail the rest of
the checks on line 9. The resulting x = 1{1, 2}21, best possible.

Lemma 5 Algorithm 1 is correct; that is, given G as input, it out-
puts x such that Gx = G.

Proof. We first observe that all labels assigned in lines 10 through
15 are to vertices of positive degree and that λ is updated if such an
assignment takes place during a pass. On the other hand, λ is also
updated whenever line 5 is executed. Thus each vertex of degree 0
is assigned its own unique label and so it does not match any other



vertex. We now show that for vertices of positive degree,

x[v] ≈ x[w] ⇐⇒ (v, w) ∈ E (where G = (V,E)). (1)

Suppose that (v, w) ∈ E. In step v of the outer for-loop on line
3, we will eventually consider w as w ∈ v.adj on line 8. If v.label ∩
w.label �= ∅ on line 9, then x[v] ≈ x[w]. Otherwise, we assign λ to
both (line 10,11), and reach the same conclusion.

Conversely, suppose that x[w1] ≈ x[w2]. Then there is a label
λ that the algorithm assigns to w1 and w2. These assignments take
place on a specific pass, say v. If v /∈ {w1, w2}, we must have (in order
for any assignments to occur), w ∈ v.adj with v.label ∩ w.label = ∅.
Then λ is assigned to v and w and clique is set equal to w. If w /∈
{w1, w2}, then the assignments of λ to w1 and w2 must take place in
line 15. This requires that one of them (say w1) is adjacent to w and
then w2 is adjacent to both w and w1. In particular, (w1, w2) ∈ E.
On the other hand, if w = w1 (or equivalently, w2), then w2 must be
assigned the label λ in line 15, which requires that w2 is adjacent to
w1, since the latter is an element of clique at this point.

Now consider the possibility that v ∈ {w1, w2}. Without loss of
generality, v = w1. If w2 ∈ v.adj, then (w1, w2) ∈ E. Otherwise,
there exists w ∈ v.adj and both v and w are assigned the label λ in
lines 10 and 11 respectively. In order for w2 to be assigned the label
λ in line 15, we need w2 to be adjacent to v = w1.

Thus, we find x[w1] ≈ x[w2] implies (w1, w2) ∈ E.

We conclude this section with some remarks on the effectiveness
and efficiency of Algorithm 1.

Remark 6 The upper bound on the size of the alphabet produced
by Algorithm 1 is m, the number of edges in G, plus the number of
isolated vertices.

Remark 7 Algorithm 1 is optimal on triangle-free graphs, in par-
ticular on maximal triangle-free graphs with 
n2/4� edges.

Given a graph G on n vertices and m edges, a straightforward
greedy algorithm determines in Θ(m) time whether or not G is a
union of cliques, merely by inspecting the adjacencies of each vertex



not included in a previously inspected clique. Since Algorithm 1
also adopts a greedy approach to the adjacencies of each vertex v
considered, we have:

Remark 8 Algorithm 1 is optimal for all graphs G that are a dis-
joint union of cliques; that is, it assigns to each vertex a single letter
defining a regular string x such that Gx = G.

4 Discussion of Algorithmic Results

In this section we compare the performance of Algorithm 1 against
two other algorithms:

• an edge clique covering algorithm proposed in the 1970s by Keller-
man [13];

• a recently proposed algorithm due to Conte et al. [5].

The number of cliques computed by both of these algorithms is re-
duced by post-processing proposed by Kou et al. [14].

Note that each of these algorithms produces the resulting edge
clique covering while Algorithm 1 produces sets of labels. As shown
in Lemma 1, we can consider the outputs of the algrithms as equiv-
alent, and translating between the two can also be done in linear
time. The test suite containing the benchmarks is written in the
Java programming language version 1.8.0 111.

Tables 1-3 show the number of labels required and correspond-
ing timings for tests of the three algorithms on randomly-generated
graphs with edge densities 0.1, 0.5 and 0.8, respectively. Algorithm 1
is generally faster than CGM, especially for more dense graphs, while
the Kellerman algorithm is an order of magnitude slower than either
of the other two. As discussed in Section 5 (Remark 13), this advan-
tage for Algorithm 1 can be extended, especially for denser graphs,
by parallel execution.

In terms of labels, however, CGM yields somewhat better results
on sparser graphs, but holds a wide advantage over both Kellerman
and Algorithm 1 for densities 0.5 and 0.8. The CGM result for density
0.5 is particularly surprising, since it drops substantially from the
CGM result for density 0.1: as discussed in Section 5 (see Figure 3),
the sizes of minimum clique covers are likely to be greatest at the



middle of the density range. It is puzzling that CGM, designed for
sparse graphs, should actually execute much better on those that are
not sparse.

100 Random Graphs: n = 1000, m = 50, 000

Algorithm
Average
Number
of Labels

Average
Run Time
(seconds)

Kellerman w/ Kou 17,400 31.6

CGM w/ Kou 15,700 0.2

Algorithm 1 19,000 0.2

Table 1. Graphs on 1000 vertices with edge density 0.1.

100 Random Graphs: n = 1000, m = 250, 000

Algorithm
Average
Number
of Labels

Average
Run Time
(seconds)

Kellerman w/ Kou 19,100 74.5

CGM w/ Kou 11,500 2.0

Algorithm 1 21,600 1.4

Table 2. Graphs on 1000 vertices with edge density 0.5.

In order to estimate the average case run time of Algorithm 1,
we executed it on 100 randomly-generated graphs of orders n =
500, 600, . . . , 1500 for each of the three edge densities 0.1, 0.5, 0.8.
Over each set of 100 runs, the average time required per run was



100 Random Graphs: n = 1000, m = 400, 000

Algorithm
Average
Number
of Labels

Average
Run Time
(seconds)

Kellerman w/ Kou 9,200 29.5

CGM w/ Kou 3,700 2.8

Algorithm 1 8,200 0.8

Table 3. Graphs on 1000 vertices with edge density 0.8.

computed. For densities 0.1 and 0.8, the first differences of the tim-
ings appeared to be linear in n, slightly concave upward for 0.5.

The interested reader may download the software from the Github
repository. The implementation of Algorithm 1, the implementa-
tions of the other two algorithms in the above tables (Kellerman and
CGM), as well as the text files containing the results of running the
experiments, are contained in the directory Java/LabelAlgorithm

in: https://github.com/joelhelling/GraphIndeterminates

5 Conjectures and Open Problems

Based on the experiments described in Section 4, we first state the
following:

Conjecture 9 In the average case, for fixed edge density, Algo-
rithm 1 executes in O(n2 log n) time.

As remarked earlier, Algorithm 1 inspects the q’s in line 13 in
non-decreasing order of l(q), where l(q) is the number of labels al-
ready assigned to q. Without this heuristic, Algorithm 1 would per-
form much worse in practice: in Tables 1, 2, 3, the Average Number
of Labels would be 28,700, 37,000, 29,900, respectively. The reason
seems to be, intuitively, that with the heuristic we cover the graph
with fewer cliques, as we go first for those vertices that are in no
cliques or in fewer cliques.



Let G1 and G2 be two undirected simple graphs of order n each
with vertices 1, 2, . . . , n. G1 and G2 are said to be distinct if and
only if there exists no permutation of the vertices of G2 such that
the adjacency (edge) sets of G1 and G2 are pairwise identical; that
is, they are distinct if they are not isomorphic. Let G(n) denote the
set of all distinct graphs of order n.

For any graph G ∈ G(n), let B denote a basis of the set of cliques
(that is, by Lemma 1, a minimum alphabet of the associated string),
and let b = |B|. Denote by b(n) the average value of b over all G ∈ G(n).

Fig. 2. This is a plot of the average number of symbols that are used
to label vertices of graphs. The x-axis is the number of vertices in
the graph, and the y-axis is the average number of symbols used to
label the vertices of 100 random graphs on n = 1, . . . , 3500 vertices.

Now consider the process of computing a graph G ′ in G(n+1) from
a graph G in G(n). All the graphs of G(n+1) can be formed by adding
a single vertex v with label n + 1, then adding t = 0, 1, . . . , n edges



in all possible ways to the vertices of each G ∈ G(n). The graphs
formed in this manner will however not be distinct. For t = 0, a
single new graph will be introduced, with φ(G ′) = φ(G) + 1, where
the 1 accounts for the isolated singleton. For t ≥ 1, every collection
of new edges from v that include every vertex in a maximal clique of
G will extend the maximal clique by a single vertex, and may or may
not add a single element to the basis of G ′ that has no equivalent in
G. Otherwise, collections of new edges that access only some vertices
in a maximal clique of G will surely add at least one new element.

With this construction in mind, it appears plausible that, espe-
cially when graphs are constrained to be distinct, b(n+1) will not be
much larger than b(n). As an example, b(1) = 1, b(2) = 1.5, b(3) = 2
and b(4) = 29/11. This idea is reinforced by Figure 2, which shows
the growth of Algorithm 1’s output as n ranges from 1 to 3,500, and
leads to the following:

Conjecture 10 b(n) ∈ O(n log n).

From the analysis of Algorithm 1, we see that computing the intersec-
tion number θ(G) is easy when there are very few edges (e.g., isolated
vertices and edges that are maximal cliques are easily handled), also
when there are many edges (e.g., a complete graph requires just one
label). So the problem is difficult somewhere in between. As shown
in Figure 3, this intuition is borne out by experimental data.

It is clear from the results mentioned in Section 2 that the graph
in Figure 3, as well as all such graphs for any number of vertices n,
reach the maximum at 
n2/4� (in Figure 3 where n = 7, 
72/4� = 12,
which is indeed the maximum).

We conjecture that such graphs have a “saw-tooth” shape, be-
cause every graph on n vertices is the subgraph of some graph on
n+1 vertices, so that maxima from smaller graphs may be reflected
as local maxima in the bigger graph.

Problem 11 For graphs G = G(n,m), i.e., graphs on n vertices and
m edges, characterize the shape of the Edge Graph that shows θ(G)
for fixed n and each m = 0, 1, . . . ,

(
n
2

)
.

We also conjecture that our algorithm is optimal up to a reorder-
ing of vertices. What we mean by this is that for every graph G,



Fig. 3. Edge Graph: this is a plot for all graphs on seven vertices,
where the x-axis is the number of edges (0–21), and the y-axis is
the maximum number of labels assigned (by an optimal labelling
algorithm) over all the graphs with a fixed number of edges. Note
the low number of labels at the extremes, the plateaus, and the spikes
in the middle.

there exists a graph G ′ isomorphic to G such that the alphabet of
the indeterminate string x produced by Algorithm 1 applied to G ′

has size σmin. In other words, if we can “rig” the order of the vertices
in the outer loop and the ordering of each adjacency list, so as to
effectively trace out the cliques in a given basis B (this of course
requires knowing the basis B beforehand), then we get an optimal
labeling. Thus a potential strategy to reduce the labels computed by
Algorithm 1 is to find a basis for effective reordering of the vertices.

Conjecture 12 There exists an ordering of the vertices, respected
also in the processing of the adjacency lists for each vertex, such that



Algorithm 1 will return x on an alphabet of minimum size σmin =
φ(G). See Figure 4.

The natural way to approach Conjecture 12 is to strive to show
that there exists an ordering of the vertices that corresponds to the
ordering induced somehow by an optimal labelling. Given such a
labeling {λ1, λ2, . . . , λs}, a candidate for a good corresponding or-
dering is:

S = Cλ1 , Cλ2 − Cλ1 , . . . , Cλi+1
−

i⋃

j=1

Cλj
, . . . , Cλs −

s−1⋃

j=1

Cλj
, (2)

where Cλ is the set of vertices labeled with λ. The idea in (2) is that
we order the vertices by labels, making sure that vertices are not
repeated. Also note that given any set of vertices in (2), such as Cλ1

(vertices labeled with λ1), or Cλ2 −Cλ1 (vertices labeled with λ2 but
not with λ1), etc., the vertices within any such set can be ordered in
an arbitrary manner.

Given an S as in (2), note that the same ordering is employed in
line 3 of Algorithm 1 (the main loop), and in lines 8 and 13, where
the adjacency list of v, denoted v.adj is examined in the order given
by S. Consider what would happen if we were to run Algorithm 1
on the graph given in Figure 4(a). Suppose that Cλ1 = {1, 2, 3},
Cλ2 = {2, 4, 5}, and Cλ3 = {3, 5, 6}, so that S = 1, 2, 3, 4, 5, 6. Then
Algorithm 1 would assign λ1 to v = 1, and then also λ1 to w = 2,
and then it examines all the q’s in 1.adj which are not w, in the
order given in S, so it will find q = 3, and assign it λ1 as well and
create Cλ1 .

Then, the algorithm will create Cλ2 = {2, 4, 5}, but now we have
a problem as we examine v = 3. The first w in the order given by
S with which v does not share a label is w = 5, and so 3 and 5 will
share λ3. But now we examine the q’s in the order given by S, 2
is connected to both 3 and 5, and so 2 will get labeled with λ3 as
well! Finally, the algorithm will create Cλ4 = {3, 5, 6}, producing a
non-optimal labeling.

This problem could be avoided by keeping S, but rearranging
the adjacency lists to start by exploring the intended clique: in the
running example, 3.adj = 5, 6, 1, 2. In general, the ordering given by



S, and then each v.adj given by first listing the Cλ such that λ is a
label of v in the optimal ordering, would work. Still, we conjecture
that a canonical ordering, such as the one given in Figure 4(b), exists
for every graph. This is Conjecture 12.

Remark 13 Algorithm 1 can be executed in parallel by partitioning
the vertices such that each thread will compute the labeling of the
subgraph Gv = {v ∪ v.adj}, where each v is not adjacent to any
previously selected v.

Since Algorithm 1 only considers v and v.adj, we can compute
the labeling of each subgraph in a separate thread to parallelize
the computation. This can lead to a duplication of cliques when
processing two subgraphs Gv and Gv′ , but only when v.adj ∩ v′.adj
contains cliques. There are two ways in which this duplication can
be eliminated. First, through the matrix M as described in Section 3
which will prevent duplicate computation of a clique. Second, since
the subgraphs are processed in parallel, they may be producing the
same clique at the same time. This can be detected by keeping track
of the produced cliques and removing cliques that contain the same
vertices.

Another consideration is the l(q) heuristic that is updated for
every label used, and is used to order the q’s before they are processed
in line 13. One way of dealing with it is by having global access to
l(q), but updating and sorting will most likely create lock contention
issues. A different solution would be to have each thread keep track of
labels added when processing the current subgraph, but this localized
solution may not produce results as favorable as the global approach.

The parallelization of Algorithm 1 could produce considerable
speed up on very large sparse graphs, but for dense graphs, the
algorithm will converge to the single threaded case.

Appendix: The Erdős-Goodman-Posá proof

Theorem 2 in [6] is stated as follows:

Theorem Any graph G(n) of order n ≥ 2 with no isolated vertices
can be covered by at most 
n2/4� complete graphs. Further, in the
covering we need to use only edges and triangles.



1

2

4 55 6

33

5 6
(a) Non-optimal Ordering

1

4

2 66 3

55

6 3
(b) Optimal Ordering

Fig. 4. Alg. 1 yields x = 1{1, 2, 3}{1, 3, 4}2{2, 3, 4}4 and x =
123{1, 2}{1, 3}{2, 3} on (a) and (b), respectively. This results in a
smaller alphabet for (b), which in this case is minimum.

The proof has a gap, but it can be repaired. The problem is that
the authors do not deal correctly with subgraphs that have isolated
vertices.

First, they observe that the theorem holds for n = 2 and n = 3.
They propose to use induction, reducing a graph G(n+2) to the G(n)

case. They note that


(n+ 2)2/4� = 
n2/4�+ n+ 1.

Now take any edge (x1, x2) of a graph G(n+2) and consider the graph
G(n) obtained by eliminating x1 and x2. Thus we have a graph on n
vertices and whatever edges join them. They then invoke the induc-
tion hypothesis to get a cover for the subgraph, then add back in
the n + 1 or fewer edges or triangles required to cover G(n+2) to get
their result.

Unfortunately, this induction does not apply in general since G(n)

may have isolated vertices. In fact, all vertices might be isolated.
Suppose that G(n) has k non-isolated vertices where 2 ≤ k ≤ n. Then
the induction hypothesis does apply to this k-vertex subgraph. For
the remaining n− k vertices, we can add a triangle or edge for each,
depending on whether it is adjacent to both x1 and x2 in G(n+2), or
only adjacent to one of them. If the latter holds for every isolated
vertex, we need to also add the edge (x1, x2). In any case, we add at
most n−k+1 new complete graphs. Then it is a matter of checking
whether

k2

4
+ n− k + 1 ≤ (n+ 2)2

4



which it is, and then drawing the appropriate conclusions about the
integer parts of each. Since we have assumed that k ≥ 2, we also
must consider the possibility that k = 0, i.e. all vertices of G(n) are
isolated. In this case the inequalilty becomes

4(n+ 1) ≤ (n+ 2)2

which reduces to n2 ≥ 0. Finally, note that k = 1 (i.e. G(n) has n− 1
isolated vertices) is not possible.

The theorem is also true for n ≥ 4 if we omit the hypothesis
about isolated vertices, provided that we allow 1-cliques as well as
2-cliques and 3-cliques in our cover. To see this, suppose that G(n)

has n− k > 0 isolated vertices. We need a 1-clique for each isolated
vertex in addition to the cover guaranteed by Theorem 2. To verify
the theorem, we need to check that

k2

4
+ n− k ≤ n2

4

which reduces to n + k ≥ 4 and therefore establishes the theorem
for n ≥ 5. We can check n = 4 directly for various k to complete the
proof.
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