e 1 of 25		JZO: For review purposes only - please do not distribute
	1	Identifying factors that influence stress physiology of the woylie, a critically
	2	endangered marsupial
	3	Stephanie Hing ^{1*} , Edward J. Narayan ² , R. C. Andrew Thompson ¹ , Stephanie S. Godfrey ¹
	4	
	5	1. School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western
	6	Australia 6150, Australia
	7	
	8	2. School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga,
	9	NSW 2650, Australia.
	10	
	11	*Corresponding author
	12	Stephanie Hing
	13	Murdoch University
	14	School of Veterinary and Life Sciences
	15	Veterinary and Biomedical Sciences Building
	16	90 South Street
	17	Murdoch, Western Australia 6150
	18	Email: <u>S.Hing@murdoch.edu.au</u>
	19	
	20	Short title
	21	Factors influencing the stress physiology of woylies
	22	
	23	Keywords
	24	cortisol, marsupials, stress, woylie
	25	
	26	
		JZO submitted manuscript

27 Abstract

Faecal glucocorticoid metabolites are minimally invasive stress physiology indices that can be used to understand how animals respond to physical and/or psychological challenges (stressors) and inform how to optimise conservation management in view of these stressors. We investigated contextual biological, environmental and parasitological factors influencing variation in baseline faecal cortisol metabolite (FCM) concentration in a critically endangered marsupial, the woylie (syn. brush-tailed bettong, *Bettongia penicillata*). Woylies have undergone a rapid and significant population decline, with environmental stressors exacerbating disease suggested to contribute to these ongoing declines. We conducted a longitudinal field study of 15 adult woylies (9 females, 6 males) in a captive, naturalistic facility. FCM concentration in faecal samples (n=269) collected monthly over 20 months was quantified by enzyme immunoassay in parallel with measures of body condition, sex, season, female reproductive status and the presence of endoparasites and ectoparasites. Linear mixed effect modelling revealed a significant effect of season, sex, body condition index and nematode parasite status on FCM. Overall, mean FCM was lowest in summer and highest in autumn and winter, and females had higher mean FCM than males. There was a significant but weak negative association between body condition and FCM. When woylies were shedding oxyurid nematode eggs they had higher mean FCM compared to when they were not shedding. In future, knowledge of factors that influence FCM fluctuations in woylies may be considered when carrying out potentially stressful conservation interventions that may influence the future survival of this unique and threatened species.

50 Introduction

51	Global biodiversity is threatened by a growing intensity and range of challenges or
52	stressors. Stress physiology can provide insights into how animals respond to stressors
53	(Cooke et al., 2013). An essential part of the stress response involves the hypothalamic
54	pituitary adrenal (HPA) axis, which aims to maintain homeostasis by modulating
55	physiological and behavioural responses to stressors (Landys, Ramenofsky & Wingfield,
56	2006; Busch & Hayward, 2009; Parry-Jones, Webster & Divljan, 2016). Measuring
57	glucocorticoids and their metabolites provide a means to monitor the HPA axis, the
58	underlying neuroendocrine mechanism that determines how an organism functions under
59	changing conditions (Wikelski & Cooke, 2006). Faecal glucocorticoid metabolites (of
60	either cortisol or corticosterone), measured using minimally invasive methods, are
61	commonly used in wildlife (Keay et al., 2006) and are particularly practical when blood
62	sample collection immediately following capture is not possible (Romero & Reed, 2005).
63	Interpretation of faecal glucocorticoid metabolite results is aided by knowledge of
64	factors that influence baseline values. A variety of factors have been shown to correlate
65	with faecal glucocorticoid metabolite values in wildlife species, ranging from sex to season
66	(Millspaugh & Washburn, 2004). Parasites, including endoparasites (Clough, Heistermann
67	& Kappeler, 2010) and ectoparasites (St Juliana et al., 2014), have also been associated
68	with alterations in faecal glucocorticoid metabolite concentration in wildlife hosts. In part,
69	links between infection patterns and host stress physiology may be due to the effects of
70	glucocorticoids on immune function (Biondi & Zannino, 1997; Sapolsky, Romero &
71	Munck, 2000). Stress associated immunosuppression and exacerbation of infectious
72	disease could be a significant threat to wildlife (Beldomenico & Begon, 2010) and
73	understanding the relationships between host stress physiology and parasitism is important

3
4
5
6
7
8
0
3
10
11
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
36
27
31
38
39
40
41
42
43
44
45
10
40 47
4/
48
49
50
51
52
53
54
55
55
30
5/
58
59
60

75	Stress exacerbating the impact of parasitic infections has been suggested to
76	contribute to the ongoing decline of the woylie (syn. brush-tailed bettong, Bettongia
77	penicillata), a critically endangered Australian marsupial (Botero et al., 2013; Thompson
78	et al., 2014). Woylies were once abundant and widespread across much of mainland
79	Australia but became locally extinct across most of their range by the 1970s. Remnant
80	populations are now confined to Western Australia (Wayne et al., 2013a). Recent studies
81	suggest that the distribution and abundance of woylies is related to stressors including
82	habitat fragmentation, proximity to agriculture and invasive predators (Wayne et al.,
83	2013b; Yeatman et al., 2016). In addition, more virulent trypanosomes (protozoan
84	hemoparasites) have been found more commonly in declining woylie populations (Botero
85	et al., 2013; Thompson et al., 2014), and white blood cell counts in declining populations
86	are suggestive of "immunological stressors" (Pacioni et al., 2013). Hence, stress-induced
87	immunosuppression has been hypothesised to exacerbate the impacts of parasite
88	(especially trypanosome) infections, contributing to declines (Botero et al., 2013).
89	Associations between faecal cortisol metabolites (FCM), immune cell (phagocyte)
90	function and trypanosomes have since been found, which support the stress-induced
91	immunosuppression hypothesis (Hing et al., 2016). Thus, understanding how parasite
92	infection may influence long-term variation in FCM in woylies is pertinent.
93	In this study, we asked what factors such as season, sex, body condition index,
94	female reproductive status and the presence of parasites influenced variation in FCM in
95	woylies, in a longitudinal study of a captive population.
96	

97	Materials	and	methods
----	-----------	-----	---------

98 Trapping and sample collection

We studied a captive population of woylies (15 adults; 6 male, 9 female), housed in four adjacent outdoor naturalistic enclosures (3 to 4 adult woylies per 35m x 55m pen) at Native Animal Rescue in Malaga, Western Australia. Woylies had access to underground fungi, native forage (bulbs, seeds etc.), insects and a year round supplementary ration of fruit and vegetables. We trapped all individuals monthly from September (austral-spring) in 2013 to June (austral-winter) in 2015. Galvanized wire Sheffield traps (220 x 220 x 550mm) (Sheffield Wire Products, Western Australia), baited with a mixture of peanut butter and oats, were set just prior to sunset and checked before sunrise (maximum total duration in the trap was 8 to 10 hours). We pooled the faeces deposited by each individual woylie at the bottom of their trap but time since defaecation could not be determined. We acknowledge that changes in FCM concentration can occur over time, and this could have influenced our results (Laver et al., 2012). Woylies were individually identified by a unique microchip code. Animals were weighed, females were checked for the presence or absence of pouch young (pouch status), and the size of pouch young (mm) was estimated by palpation of the pouch. Faecal samples were stored frozen at -20°C until they were prepared for FCM

sample (400 to 1000µl) was collected from the lateral caudal vein into an EDTA

117 MiniCollect tube (Greiner Bio-One, Germany) to enable DNA extraction and trypanosome

assays. All faecal samples were extracted within sixteen months of collection. A blood

118 PCR. EDTA blood samples were stored at -20°C and processed within six months of

119 collection. In some cases, all assays could not be completed for every sample (e.g. due to

insufficient sample volume) but a total of 269 faecal samples and 208 blood samples were

121 analysed.

JZO: For review purposes only - please do not distribute

This work was carried out under a Western Australian Department of Parks and Wildlife Regulation 17 License to Take Fauna for Scientific Purposes (SF009623) and Murdoch University Animal Ethics Permit (RW2611/13). Faecal cortisol metabolite (FCM) enzyme immunoassay (EIA) FCM were analysed by an enzyme immunoassay (EIA) previously used for woylies (Hing et al., 2016). In summary, faecal samples (0.2g dry weight) were lyophilised (freeze-dried) and extraction carried out using 90% ethanol and heat treatment (80°C for 10min). Extracts were assayed for FCM by EIA using a polyclonal anti-cortisol antiserum R4866 protocol (Narayan et al., 2012; Hing et al., 2016). The R4866 anti-cortisol antiserum has been reported to cross react 100% with cortisol metabolites and less than 10% with other steroids (Webster, Narayan & de Vos, In Press). Results were expressed as FCM concentration (pg/g) on a dry weight basis. Parasitology analyses We performed microscopic and molecular parasitology analyses to determine what endoparasites were present. To detect gastrointestinal parasites (nematodes and protozoans), one gram wet weight of faeces was floated for 10 minutes using a concentrated sodium nitrate (NaNO₃) solution with centrifugation (Dryden *et al.*, 2005). The area under the coverslip was observed systematically under a BX51 microscope (Olympus, Japan) at 20x objective and eggs were classified as strongyle or oxyurid types (as these were the two major groups observed). To detect trypanosome blood parasites, DNA extraction and *Trypanosoma* PCR amplification from blood samples were carried out using previously described protocols validated for woylies (Botero et al., 2013; Hing et al., 2016). Presence or absence of

147	Trypanosoma species in peripheral circulation as indicated by PCR positive or negative
148	results was recorded. The ears of woylies were also visually inspected for the presence or
149	absence of ticks.
150	
151	Statistical analyses
152	We used linear mixed effect models to investigate which factors influenced FCM
153	fluctuations in woylies. To fulfil model assumptions of data conforming to a normal
154	distribution, FCM (the dependent variable) was log-transformed. Fixed effects included in
155	our model were: season (summer/autumn/winter/spring), sex (male/female), body
156	condition index, presence or absence of oxyurid eggs on faecal flotation, presence or
157	absence of strongyle eggs on faecal flotation, PCR positive or negative for trypanosomes
158	and the presence or absence of ticks. Two-way interactions between these effects were also
159	included. Woylie ID nested within pen was included as a random effect in all models to
160	account for repeated measures from the same individuals. Body condition index was
161	derived from the residuals of a regression of hindfoot (pes) length to weight, calculated
162	separately for males (p<0.001, co-efficient=28.5, R ² =0.2114) and females (p<0.001, co-
163	efficient=21.6, R ² =0.0806) and adjusted for pouch young size in females by including
164	pouch young size as a covariate. We were also interested in the effects of female
165	reproductive activity on FCM, so we re-ran the models described above for females only
166	(n=169) and included pouch status ($0 = empty \text{ or } 1 = pouch young present$) as a fixed
167	effect.
168	To ensure there was no strong multicollinearity between explanatory variables, we
169	calculated the variance inflation factor (VIF) for all explanatory variables included in the
170	maximal model, and ensured no variables had a VIF higher than 3 prior to modelling. To
171	determine the minimal adequate models, we undertook model simplification by stepwise

2
3
Δ
-
5
6
7
8
0
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
∠ I 00
22
23
24
25
20
26
27
28
20
29
30
31
32
22
33
34
35
36
27
31
38
39
40
11
41
42
43
44
45
40
40
47
48
<u>4</u> 0
-13
50
51
52
53
50 E /
54
55
56
57
50
20
59
60

172	reduction, removing non-significant terms from the maximal model until further model
173	reductions resulted in significant changes in model deviances (p<0.05) (Crawley, 2007)
174	Significance (p \leq 0.05) was tested in a likelihood ratio test (χ^2). Models were run using R
175	3.1.0 and the packages 'lme4' (Bates et al., 2015) and 'car' (Fox & Weisberg, 2011).

176

179

177 **Results**

178 Overall, FCM concentration ranged widely from 0.03 to 457.40 pg/g. Host and

180 condition index and sex (p < 0.05) (Table 1). Modelling revealed that mean log-transformed

environmental factors that significantly affected FCM in woylies included season, body

181 FCM was lowest in summer (2.5 \pm 0.2 SE, n=108 samples), moderate in spring (2.9 \pm 0.1,

182 n=50) and highest in the cooler months of autumn $(3.3 \pm 0.1 \text{ SE}, n=71)$ and winter $(3.3 \pm 0.1 \text{ SE}, n=71)$

183 0.2 SE, n=40) (Figure 1a). Overall, there was a significant but weak relationship between

body condition index and FCM (Table 1). The relationship between body condition index

and FCM differed between the sexes with a more marked negative relationship in males

186 compared to females (Figure 1b). Females $(3.1\pm0.1 \text{ SE})$ had a higher mean FCM compared

to males $(2.7\pm0.1 \text{ SE})$ (Figure 1c). In female woylies, the presence or absence of pouch

young overall did not have a significant effect on FCM (coefficient = 0.03, SE=0.40, df=1,

189 $\chi^2=1.7$, p=0.193). However, there was a significant interaction between pouch status and

190 season (coefficient = -0.79, SE = 0.72, df=1, χ^2 =8.15, p=0.04), with the greatest difference

191 noted in winter when mean FCM in females with pouch young was higher $(3.86 \pm 0.20,$

192 n=119) than females without pouch young
$$(2.46 \pm 0.59, n=52)$$
.

Oxyurid pinworm eggs were present in 17% of 269 faecal samples, and were significantly associated with FCM (Table 1). When woylies were shedding oxyurid eggs, they had higher mean FCM than when oxyurid eggs were not detected (Figure 2a). An interaction between body condition and oxyurids also influenced FCM. When woylies

197	were shedding oxyurid eggs, there was a weak positive relationship between body
198	condition index and FCM (Table 1). A weak negative relationship between body condition
199	and FCM was observed when oxyurid eggs were not detected (Figure 2b). Woylies were
200	also infected by trypanosomes (57% of 208 blood samples positive), strongyles (25% of
201	269 faecal samples positive) and ticks (44% infested of 260 inspections) in this study.
202	Interactions between trypanosome and strongyle status, and between strongyle and tick
203	status also influenced FCM. FCM was lowest when neither trypanosomes nor strongyles
204	were detected (Figure 2c) and when neither ticks nor strongyles were detected) (Figure
205	2d).
206	
207	Discussion
208	We identified several host, environmental and parasitological factors that influenced
209	baseline FCM levels of captive woylies housed in semi-natural enclosures. These
210	fluctuations in FCM may represent natural variations in HPA axis activity essential to
211	survival (Crespi et al., 2013) but they may also represent the physiological response of
212	woylies to environmental and biological stressors (such as parasites and climate) which are
213	of importance to conservation science.
214	Glucocorticoids are essential to the physiological and behavioural responses that
215	allow animals to adapt to changing conditions (Jessop, Woodford & Symonds, 2013).
216	Therefore it is not unexpected that we noted significant seasonal variation in FCM in
217	woylies as in other wildlife studies (including marsupials) of faecal glucocorticoid
218	metabolites (Romero, 2002). For example, winter peaks in FCM in koala (Phascolarctos
219	cinereus) were hypothesised to be due to low winter temperatures and rainfall and
220	associated resource limitations and metabolic demands (Davies et al., 2014).

3	221
4 5 6	222
7 8	223
9 10	224
12 13	225
14 15	226
16 17	227
18 19 20	228
21 22	229
23 24	230
25 26 27	231
27 28 29	232
30 31	233
32 33	234
34 35 36	235
37 38	236
39 40	237
41 42 43	238
43 44 45	259
46 47	240
48 49	241
50 51 52	242
53 54	244
55 56	245
57 58	2.0
วษ 60	

> The important question in understanding seasonal variation is what proximate stressors are driving ultimate seasonal changes? Seasonal reproduction and changing resource quality and quantity are often cited as proximate causes of seasonal fluctuations in faecal glucocorticoid metabolites (Romero, 2002). However, our study provides a rather unique perspective as these woylies are continuous breeders and were supplementary fed throughout the study. Levels of anthropogenic noise and human interaction (including handling), which have been reported to constitute stressors in other marsupials (Narayan *et al.*, 2013) are also unlikely explanations as these factors remained relatively constant across the study period. Alternatively, peak FCM in woylies during the cooler seasons may be associated with circadian rhythms (Lane, 2006), shortened day length (Steinmetz *et al.*, 2006), or increased metabolic demands such as energy mobilisation for thermoregulation (Steffen & Musacchia, 1985). Seasonal variation in woylie stress physiology should be considered in the timing of management interventions as it may influence their response to interventions.

Woylie body condition remained within a healthy range throughout the study and body condition was only weakly negatively associated with FCM. This is consistent with other wildlife studies that show broader relationships between stress and body condition (Mumby *et al.*, 2015) that may be due to regulation of metabolism by glucocorticoids (Sapolsky *et al.*, 2000). The presence of only a weak effect in our study may be due to the protection of the captive study population from acute stressors such as limited food resources. In a study of free-ranging woylies during a translocation program, a significant and more pronounced negative association between body condition index and FCM after translocation was found (Hing *et al.*, In Review). The negative relationship between body condition index and FCM in our current study was more marked in males compared to females. This may be associated with sex differences in endocrine regulation of

1

metabolism and body weight (Shi & Clegg, 2009), but these interactions are currently

2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
2U	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
24	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 //1	
<u></u> イン	
42	
43 44	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
ວ/ ເລ	
28	
59	
60	

247	uncharacterised in woylies. Longer-term monitoring of FCM and body condition in free-
248	ranging populations that are exposed to other potential stressors is required to investigate
249	the potential ramifications for woylie health and conservation.
250	Females had higher mean FCM than males, a pattern also reported in other
251	Australian marsupials including the bilby (Macrotis lagotis) (Narayan et al., 2012), koala
252	(Narayan et al., 2013) and southern brown bandicoot (Isoodon obesulus) (Dowle, Webster
253	& Deane, 2012). These results may be a reflection of sex differences in glucocorticoid
254	metabolism (Lane, 2006) and could suggest that male and female woylies have different
255	physiological sensitivities to stressors, a pattern that has been observed in other species
256	(Handa <i>et al.</i> , 1994).

Females woylies are capable of caring for young 96% of the time (Thompson *et al.*, 257 2015) as they are continuous breeders and can undertake embryonic diapause (Smith, 258 259 1989). Consequently, the majority of samples collected from female woylies during this study (n=171 in total) were collected when they were carrying pouch young (n=119). We 260 found no association between female pouch status and FCM, which is consistent with 261 previous suggestions that stress-induced reproductive inhibition is not a major concern for 262 woylie conservation (Wayne et al., 2013a). Nevertheless, the greatest difference between 263 females with versus without pouch young was noted in winter which may suggest greater 264 physiological demands on mothers during this time. 265

When woylies were shedding oxyurid pinworm eggs, they had significantly higher FCM concentration compared to when oxyurid eggs were not detected. This may reflect parasite induced stress or exacerbation of infection by stress. Itching associated with the perianal deposition of oxyurid eggs has been found to cause mild chronic stress in rats (Silveira *et al.*, 2003). In addition, experiments have shown that stressor exposure

271	increases the shedding of oxyurid eggs in captive ground squirrels (Citellus armatus)
272	(Noble, 1966). We also found that the relationship between body condition index and
273	FCM was influenced by the presence or absence of oxyurid eggs. However the relationship
274	was weak, so the biological significance of this effect is unclear.
275	We sought to investigate the impact of parasite co-infection on host stress
276	physiology because animal hosts are commonly infected by multiple endoparasite and
277	ectoparasite types with potential effects on host immunity and health (Ezenwa et al.,
278	2010). While we found FCM was lowest when neither trypanosomes nor strongyles were
279	detected and when neither ticks nor strongyles were detected, other results found in this
280	study suggest that the relationship between stress physiology and parasite co-infection in
281	woylies is complex. For example, in trypanosome positive woylies mean FCM was higher
282	when strongyle eggs were not detected compared to when strongyle eggs were detected.
283	This is consistent with findings from studies of free-ranging woylies. When free-ranging
284	woylies were trypanosome positive, strongyle egg counts decreased as FCM increased
285	(potentially making eggs less likely to be detected if counts dropped below the detectable
286	threshold) (Hing et al., 2016). It is possible that these interactions reflect the influence of
287	stress physiology on different arms of the immune system (such as T helper 1 and T helper
288	2 responses) responsible for defence against micro-parasites (such as trypanosomes) and
289	macro-parasites (such as strongyles) (Padgett & Glaser, 2003; Hing et al., 2016). The
290	immune response to parasites and the potential coordinating role of glucocorticoids, while
291	widely explored in other species (Sapolsky et al., 2000), remain areas for further
292	exploration in woylies.
293	Future projects that use FCM in woylies should be aware of the strengths and
294	limitations of our approach. In general, given how woylies must be trapped and handled,
295	FCM are more practical physiology metrics in this species compared to other measures

296	like plasma glucocorticoids. However, as the application of FCM in woylie research and
297	management remains in its infancy, further optimisation would strengthen our ability to
298	interpret results of the EIA used in our study. High performance liquid chromatography
299	(HPLC) and gas chromatography-mass spectrometry (GC-MS), though costly and resource
300	intensive, would allow identification of hormone metabolite constituents in woylie faeces,
301	which would be valuable for example to pinpoint sex-related differences in glucocorticoid
302	metabolism (Monfort, 2003). Of most importance is the biological relevance of the
303	hormonal titre, that is, does the FCM data relate to biological events of interest?
304	Adrenocorticotropic hormone (ACTH) challenge for assay validation is not feasible for
305	woylies housed in large enclosures because it is not practical nor ethically permissible to
306	trap and collect faecal samples three times a day for several days as previously performed
307	in a woylie (n=1) in a zoo study (Fanson <i>et al.</i> , 2015). However, we have demonstrated
308	that the R4866 FGM EIA can detect variation in FCM concentration related to
309	translocation (Hing et al., In Review) and in association with differences in immune
310	function (Hing et al., 2016). Thus the protocol we employed provides physiologically
311	relevant information by monitoring FCM in relation to environmental and management
312	factors.
313	

5. Conclusions

This longitudinal study revealed insights into factors influencing stress physiology indices in a captive population of woylies. Sex and seasonal factors had the greatest influence on FCM fluctuations and parasite parameters showed some interesting and complex interactions that are yet to be fully understood. This study provides a baseline for understanding what factors should be considered when carrying out potentially stressful conservation interventions or other anthropogenic activities that may influence the future

321 survival of this unique and critically endangered species.

322	Declaration of interest
323	We declare that there is no conflict of interest that could be perceived as prejudicing the
324	impartiality of the research reported.
325	
326	Funding
327	This work was supported by the Australian Academy of Science Margaret Middleton
328	Foundation, Foundation of National Parks and Wildlife, the Holsworth Wildlife Research
329	Endowment, Australian Society for Parasitology and a Murdoch University School of
330	Veterinary and Life Sciences Research Grant. S.G. was supported by an Australian
331	Research Council DECRA (DE120101470). S.H. was supported by an Australian
332	Postgraduate Award with a Murdoch University Strategic Top-Up Scholarship.
333	
334	Acknowledgements
335	Thank you to the Western Australian Department of Parks and Wildlife, Lizzie Aravidis
336	and the staff at Native Animal Rescue for caring for the study animals and facilitating

fieldwork. We're grateful to Sarah Keatley who carried out the Trypanosoma assays, and

to all field volunteers especially Dr Krista Jones who assisted with data collection.

References

340	Beldomenico, P.M. & Begon, M. (2010). Disease spread, susceptibility and infection					
341	intensity: vicious circles? Trends Ecol. Evol. 25, 21–27.					
342	Biondi, M. & Zannino, LG. (1997). Psychological stress, neuroimmunomodulation, and					
343	susceptibility to infectious diseases in animals and man: a review. Psychother.					
344	<i>Psychosom.</i> 66 , 3–26.					
345	Botero, A., Thompson, C.K., Peacock, C.S., Clode, P.L., Nicholls, P.K., Wayne, A.F.,					
346	Lymbery, A.J. & Thompson, R.C.A. (2013). Trypanosomes genetic diversity,					
347	polyparasitism and the population decline of the critically endangered Australian					
348	marsupial, the brush tailed bettong or woylie (<i>Bettongia penicillata</i>). Int. J.					
349	Parasitol. Parasites Wildl. 2, 77–89.					
350	Busch, D.S. & Hayward, L.S. (2009). Stress in a conservation context: A discussion of					
351	glucocorticoid actions and how levels change with conservation-relevant variables.					
352	Biol. Conserv. 142, 2844–2853.					
353	Clough, D., Heistermann, M. & Kappeler, P.M. (2010). Host intrinsic determinants and					
354	potential consequences of parasite infection in free-ranging red-fronted lemurs					
355	(Eulemur fulvus rufus). Am. J. Phys. Anthropol. 142, 441–452.					
356	Cooke, S.J., Sack, L., Franklin, C.E., Farrell, A.P., Beardall, J., Wikelski, M. & Chown,					
357	S.L. (2013). What is conservation physiology? Perspectives on an increasingly					
358	integrated and essential science. Conserv. Physiol. 1, cot001.					
359	Crawley, M.J. (2007). <i>The R Book.</i> Chichester, England ; Hoboken, N.J. Wiley-Blackwell.					
360	Crespi, E.J., Williams, T.D., Jessop, T.S. & Delehanty, B. (2013). Life history and the					
361	ecology of stress: how do glucocorticoid hormones influence life-history variation					
362	in animals? <i>Funct. Ecol.</i> 27 , 93–106.					
363	Davies, N., Gramotnev, G., Seabrook, L., McAlpine, C., Baxter, G., Lunney, D. &					
364	Bradley, A. (2014). Climate-driven changes in diet composition and physiological					
365	stress in an arboreal folivore at the semi-arid edge of its distribution. Biol. Conserv.					
366	172, 80–88.					
367	Dowle, M.D., Webster, N. & Deane, E. (2012). Faecal glucocorticoid metabolite					
368	concentrations in the free-ranging bandicoots (Perameles nasuta and Isoodon					
369	obesulus) of northern Sydney. Aust Mammol 35, 1–7.					
370	Dryden, M.W., Payne, P.A., Ridley, R. & Smith, V. (2005). Comparison of common fecal					
371	flotation techniques for the recovery of parasite eggs and oocysts. Vet Ther. 6, 15-					
372	28.					
373	Ezenwa, V.O., Etienne, R.S., Luikart, G., Beja-Pereira, A. & Jolles, A.E. (2010). Hidden					
374	consequences of living in a wormy world: nematode-induced immune suppression					
375	facilitates tuberculosis invasion in African buffalo. Am. Nat. 176, 613-624.					
376	Fox, J. & Weisberg, S. (2011). An {R} Companion to Applied Regression. 2nd edn.					
377	Thousand Oaks CA: Sage.					

1		
2	270	Unde D. L. Demander, J. H. Kern, J.E. & O'Kerfe, J.A. (1004). Computed at standid to survey of
3	3/8	Handa, K.J., Burgess, L.H., Kerr, J.E. & O Keere, J.A. (1994). Gonadal steroid normone
4 5	379	Patrice 29 A(A 47)
6	380	<i>Benav.</i> 28, 464–476.
7	201	Lling & Currie A. Dreamfield & Kastley & Jones K. Thompson D. Narayan E. R.
8	381	Hing, S., Currie, A., Broomheid, S., Keatley, S., Jones, K., Thompson, K., Narayan, E. α
9	382	Godfrey, S. (2016). Host stress physiology and <i>Trypanosoma</i> naemoparasite
10	383	infection influence innate immunity in the woyle (<i>Bettongia peniciliata</i>). Comp.
11	384	Immunol. Microbiol. Infect. Dis. 46, 32–39.
12	205	Lling & Northauer & Narayan E. Wayna & F. Janes V. Kastlay S. Thompson &
13	385	Ring, S., Normover, A., Narayan, E., Wayne, A.F., Jones, K., Keaney, S., Thompson, A.
14	380	& Goulley, S.S. (In Review). Evaluating stress physiology and parasite infection
15	387	parameters in the transfocation of critically endangered woynes (<i>Bettongia</i>
10	388	penicillata). EcoHealth.
17	200	Lagon T.S. Woodford D. & Symonda M.D.E. (2012) Magragitrage do large goals
19	389	Jessop, T.S., Woodfold, K. & Symonus, M.K.E. (2015). Macrosuless. do large-scale
20	390	Ecological patients exist in the glucocorticold stress response of vertebrates? Funct.
21	391	<i>ECOI</i> . 27, 120–130.
22	202	Kooy IM Singh I Bh D. Count M.C. Kour T (2006) Econd discovertionids and their
23	392	Keay, J.M., Shigii, J., Fli, D., Gaulit, M.C., Kaul, T (2000). Fecal glucocoliticolds and then
24	393	metabolites as indicators of stress in various manimalian species . a metalure
25	394	review. J. 200 Wilal. Mea. 31, 234–244.
26	205	Kitavaku A.S. Wingfield I.C. & Piett I.F. (1000) Dynamics of food availability body
27	393	Analysky, A.S., whigher, J.C. & Flat, J.F. (1999). Dynamics of food availability, body
28	207	Eurot Ecol 12, 577, 594
29	397	Funci. Ecol. 13, 577–384.
31	208	Landys M.M. Ramenofsky, M. & Wingfield I.C. (2006). Actions of alucocorticoids at a
32	200	seasonal baseline as compared to stress related levels in the regulation of periodic
33	400	life processes. <i>Can. Comp. Endocrinol.</i> 149 , 122, 140
34	400	The processes. Gen. Comp. Endocrinol. 146, 152–149.
35	401	Lane I (2006) Can non-invasive glucocorticoid measures be used as reliable indicators of
36	401	stress in animals? Anim Welf 15 331
37	402	suess in animals: main. Welj. 13, 351.
38	403	Laver P.N. Ganswindt A. Ganswindt S.B. & Alexander K. A. (2012) Non-invasive
39	404	monitoring of glucocorticoid metabolites in banded mongooses (Mungos mungo) in
40	405	response to physiological and biological challenges. General and Comparative
41	406	Findocrinology 179 178–83
42	400	Linuocrinology 117, 170-05.
44	407	
45	408	Millspaugh, J.J. & Washburn, B.E. (2004). Use of fecal glucocorticoid metabolite
46	409	measures in conservation biology research: considerations for application and
47	410	interpretation Gen Comp Endocrinol 138 189–99
48	110	
49	411	Mumby, H.S., Mar, K.U., Thitaram, C., Courtiol, A., Towiboon, P., Min-Oo, Z., Htut-
50	412	Aung, Y., Brown, J.L. & Lummaa, V. (2015). Stress and body condition are
51 50	413	associated with climate and demography in Asian elephants. Conserv. Physiol. 3
52		
১ ১ 54	414	Narayan, E., Hero, J., Evans, N., Nicolson, V. & Muccib, A. (2012). Non-invasive
55	415	evaluation of physiological stress hormone responses in a captive population of the
56	416	greater bilby Macrotis lagotis. Endanger. Species Res. 18, 279–289.
57	-	
58		
59		
60		17

2	
2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
22	
20	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
38	
30	
39	
40	
41	
42	
43	
44	
15	
40	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
50	
00	
57	
58	
59	
60	

417 418 419	Narayan, E.J., Webster, K., Nicolson, V., Mucci, A. & Hero, JM. (2013). Non-invasive evaluation of physiological stress in an iconic Australian marsupial: the koala (<i>Phascolarctos cinereus</i>). Gen. Comp. Endocrinol. 187, 39–47.
420 421	Noble, G.A. (1966). Stress and parasitism. III. Reduced night temperature and the effect on pinworms of ground squirrels. <i>Exp. Parasitol.</i> 18 , 61–62.
422 423 424	 Pacioni, C., Robertson, I.D., Maxwell, M., van Weenen, J. & Wayne, A.F. (2013). Hematologic characteristics of the woylie (<i>Bettongia penicillata ogilbyi</i>). J. Wildl. Dis. 49, 816–830.
425 426	Padgett, D.A. & Glaser, R. (2003). How stress influences the immune response. <i>Trends Immunol.</i> 24, 444–448.
427 428 429	Parry-Jones, K., Webster, K.N. & Divljan, A. (2016). Baseline levels of faecal glucocorticoid metabolites and indications of chronic stress in the vulnerable grey- headed flying-fox, <i>Pteropus poliocephalus</i> . <i>Aust. Mammal.</i>
430 431	Romero, L.M. (2002). Seasonal changes in plasma glucocorticoid concentrations in free- living vertebrates. <i>Gen. Comp. Endocrinol.</i> 128 , 1–24.
432 433 434	Romero, L.M. & Reed, J.M. (2005). Collecting baseline corticosterone samples in the field: is under 3 min good enough? <i>Comp. Biochem. Physiol. A. Mol. Integr.</i> <i>Physiol.</i> 140, 73–79.
435 436 437	Sapolsky, R.M., Romero, L.M. & Munck, A.U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. <i>Endocr. Rev.</i> 21 , 55–89.
438 439 440	Shi, H. & Clegg, D.J. (2009). Sex differences in the regulation of body weight. <i>Physiology</i> & <i>Behavior</i> 97 , 199–204.
441 442 443	Silveira, A.C., Gilioli, R., Oliveira, E.S. & Bassani, R.A. (2003). Subsensitivity to beta- adrenergic stimulation in atria from rats infested with <i>Syphacia</i> spp. <i>Lab. Anim.</i> 37 , 63–67.
444 445	Smith, M.J. (1989). Release of embryonic diapause in the brush-tailed bettong <i>Bettongia penicillata</i> . In <i>Kangaroos, Wallabies and Rat Kangaroos</i> : 317–321.
446 447 448	St Juliana, J.R., Khokhlova, I.S., Wielebnowski, N., Kotler, B.P. & Krasnov, B.R. (2014). Ectoparasitism and stress hormones: strategy of host exploitation, common host- parasite history and energetics matter. J. Anim. Ecol. 83.
449 450	Steffen, J.M. & Musacchia, X.J. (1985). Glucocorticoids and hypothermic induction and survival in the rat. <i>Cryobiology</i> 22, 385–391.
451 452 453 454	 Steinmetz, H.W., Kaumanns, W., Dix, I., Heistermann, M., Fox, M. & Kaup, FJ. (2006). Coat condition, housing condition and measurement of faecal cortisol metabolites– a non-invasive study about alopecia in captive rhesus macaques (<i>Macaca mulatta</i>). J. Med. Primatol. 35, 3–11.

1		
2	155	Thompson C.K. Wayne A.F. Godfrey S.S. & Thompson R.C.A. (2014). Temporal and
4	455	snatial dynamics of trynanosomes infecting the brush-tailed bettong (<i>Bettongia</i>
5	457	<i>penicillata</i>): a cautionary note of disease-induced population decline <i>Parasit</i>
6	457	Vactors 7, 160
7	438	vectors 7, 109.
8	159	Thompson C.K. Wayne A.F. Godfrey S.S. & Thompson R.C.A. (2015) Survival age
9	455	estimation and sexual maturity of pouch young of the brush-tailed bettong
10	400	(<i>Bettongia nenicillata</i>) in continuity Aust Mammal 37 20 38
11	401	(Denongia penicinaia) in capitvity. Ausi. Mammai. 57, 29–38.
12	462	Wayne A Maxwell M A Ward C G Vellios C V Ward B G Liddelow G I
13	402	Wilson I. Wayne I.C. & Williams M.R. (2013a) Importance of getting the
14	403	numbers right: quantifying the rapid and substantial dealing of an abundant
15	464	numbers right, quantifying the rapid and substantial decline of an abundant
10	465	marsupiai, <i>Bellongia peniciliala. Wilal. Res.</i> 40, 109–185.
18	100	Warma A. Maywall M.A. Ward C.C. Valliag C.V. Wilson I. Warma I.C. &
19	466	Wayne, A., Maxwen, M.A., Waid, C.G., Vennos, C.V., Whison, I., Wayne, J.C. &
20	467	williams, M.R. (2013b). Sudden and rapid decline of the abundant marsupial
21	468	Bettongia penicillata in Australia. Oryx 49, 1–11.
22	460	Webster K. Nerssen, F. & J. Ver, N. (L. Dreed) Freed above starting in stabulity
23	469	webster, K., Narayan, E. & de Vos, N. (in Press). Faecal glucocorticoid metabolite
24	470	response of captive koalas (<i>Phascolarctos cinereus</i>) to visitor encounters. Gen.
25	471	Comp. Endocrinol.
26		
27	472	Wikelski, M. & Cooke, S.J. (2006). Conservation physiology. <i>Trends Ecol. Evol.</i> 21, 38–
28	473	46.
29		
30	474	Yeatman, G.J., Wayne, A.F., Mills, H.R. & Prince, J. (2016). Temporal patterns in the
31	475	abundance of a critically endangered marsupial relates to disturbance by roads and
ఎ∠ 22	476	agriculture. PLoS One 11, e0160790.
34		
35	477	
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
41 19		
40 10		
-+-9 50		
51		
52		
53		

54

58 59 60

478 Tables and figures

480 Table 1. Coefficients for the minimum adequate linear mixed effect model of factors

481 affecting faecal cortisol metabolites (FCM log-transformed). Significant factors in bold

482 (n=202 readings from 15 individuals).

Fixed effects	Coefficient	SE	Df	χ^2	p-value
Body condition index	-0.001	0.001	1	3.905	0.048
Season	1.047	0.205	1	30.561	<0.001
Sex	-0.447	0.168	1	6.577	0.010
Trypanosomes	0.418	0.190	1	0.987	0.321
Oxyurid pinworm eggs	0.522	0.221	1	5.134	0.024
Strongyle nematode eggs	1.166	0.375	1	0.059	0.808
Ticks	0.288	0.213	1	0.129	0.720
Body condition index:sex	-0.447	0.002	1	4.522	0.034
Body condition index:pinworm eggs	0.005	0.003	1	3.970	0.046
Trypanosomes:strongyle eggs	-1.166	0.416	1	7.838	0.005
Strongyle eggs:ticks	-0.835	0.391	1	4.563	0.033

487 woylies: (a) Season, (b) Interactive effect of body condition and sex, (c) Sex. In (a) and

488 (c), dots represent (averaged) FCM concentration of individual woylies and horizontal

489 lines mark the overall mean.

Figure 2. Parasite factors which influence faecal cortisol metabolites in woylies: (a)
Oxyurid pinworm status (eggs not detected n=215, eggs detected n=44) (b) Interactive

effect of body condition index and oxyurid status, (c) Interactive effect of trypanosome
(not detected n=90, detected n=118) and strongyle status (not detected n=195, detected
n=64), (c) Interactive effect of strongyle and tick status (not detected n=145, detected

496 n=115).

497

490

498 - END-

Page 23 of 25

Fixed effects	Coefficient	SE	Df	χ^2	p-value
Body condition index	-0.001	0.001	1	3.905	0.048
Season	1.047	0.205	1	30.561	<0.001
Sex	-0.447	0.168	1	6.577	0.010
Trypanosomes	0.418	0.190	1	0.987	0.321
Oxyurid pinworm eggs	0.522	0.221	1	5.134	0.024
Strongyle nematode eggs	1.166	0.375	1	0.059	0.808
Ticks	0.288	0.213	1	0.129	0.720
Body condition index:sex	-0.447	0.002	1	4.522	0.034
Body condition index:pinworm eggs	0.005	0.003	1	3.970	0.046
Trypanosomes:strongyle eggs	-1.166	0.416	2	7.838	0.005
Strongyle eggs:ticks	-0.835	0.391	1	4.563	0.033

190x254mm (96 x 96 DPI)

View publication stats

00 00

0

Strongyle not detected
Strongyle eggs detected

Detected

8

