Murdoch University Research Repository

Welcome to the Murdoch University Research Repository

The Murdoch University Research Repository is an open access digital collection of research
created by Murdoch University staff, researchers and postgraduate students.

Learn more

Environmental sensor networks for vegetation, animal and soil sciences

Zerger, A., Viscarra Rossel, R.A., Swain, D.L., Wark, T., Handcock, R.N., Doerr, V.A.J., Bishop-Hurley, G.J., Doerr, E.D., Gibbons, P.G. and Lobsey, C. (2010) Environmental sensor networks for vegetation, animal and soil sciences. International Journal of Applied Earth Observation and Geoinformation, 12 (5). pp. 303-316.

Link to Published Version: http://dx.doi.org/10.1016/j.jag.2010.05.001
*Subscription may be required

Abstract

Environmental sensor networks (ESNs) provide new opportunities for improving our understanding of the environment. In contrast to remote sensing technologies where measurements are made from large distances (e.g. satellite imagery, aerial photography, airborne radiometric surveys), ESNs focus on measurements that are made in close proximity to the target environmental phenomenon. Sensors can be used to collect a much larger number of measurements, which are quantitative and repeatable. They can also be deployed in locations that may otherwise be difficult to visit regularly. Sensors that are commonly used in the environmental sciences include ground-based multispectral vegetation sensors, soil moisture sensors, GPS tracking and bioacoustics for tracking movement in wild and domesticated animals. Sensors may also be coupled with wireless networks to more effectively capture, synthesise and transmit data to decision-makers. The climate and weather monitoring domains provide useful examples of how ESNs can provide real-time monitoring of environmental change (e.g. temperature, rainfall, sea-surface temperature) to many users. The objective of this review is to examine state-of-the-art use of ESNs for three environmental monitoring domains: (a) terrestrial vegetation, (b) animal movement and diversity, and (c) soil. Climate and aquatic monitoring sensor applications are so extensive that they are beyond the scope of this review. In each of the three application domains (vegetation, animals and soils) we review the technologies, the attributes that they sense and briefly examine the technical limitations. We conclude with a discussion of future directions.

Item Type: Journal Article
Publisher: CSIRO
Copyright: © 2010 Published by Elsevier B.V.
URI: http://researchrepository.murdoch.edu.au/id/eprint/35218
Item Control Page Item Control Page